“数学活动”理念与高等数学教学

“数学活动”理念与高等数学教学

一、“数学活动”观与高等数学教学(论文文献综述)

王玉海,于卓[1](2022)在《数学文化融入高等数学教学的有效途径和方法》文中研究说明伴随着课程思政的引入,作为课程思政重要组成部分的数学文化越来越受到高校、教师和同学们的关注,高等数学是理工科院校一门重要的基础课,数学文化作为高等数学的精髓,越来越引起高校师生的重视,高等数学教学中融入数学文化已经成为高等数学教育改革的发展方向,本文重点阐述了数学文化的内涵、数学文化融入高等数学教学的价值以及数学文化融入高等数学教学的有效途径和方法。

陈伟方[2](2021)在《提高高职院校高等数学教学有效性的实践研究》文中提出高等数学是高职院校培养具有创新性人才的重要课程。当前由于种种原因,高职院校高等数学教学现状不容乐观,不能体现教育现代化要求,不能全面落实立德树人根本任务。要培养面向生产、建设、管理、服务第一线需要的"下得去、留得住、用得上"、实践能力强、具有良好职业道德的高素质技能型人才,必须全面改革高职院校高等数学教学,提高教学有效性。本文从现状分析出发,探析提高高职院校高等数学教学有效性的策略,以期为教学质量提高提供借鉴。

沈小雨[3](2021)在《数学史融入高等数学教学的意义和方法探究》文中提出高等数学教学作为一门复杂、系统的学科,数学史的融入意义非凡。数学史在高等数学教学中的融入与运用,需要将数学史融入高等数学教学的整个框架中,在两者的相互促进与作用下,探究两者之间的关系,发展学生思维,帮助学生理解和理清数学知识脉络,进而提升学生的数学学习能力,达到高等数学教学实践有效性的目的。立足于数学史的内涵,分析数学史融入高等数学教学的意义,提出数学史融入高等数学教学的实践方法。

徐校会[4](2021)在《大专本科院校小学教育专业高等数学课程教学探析》文中提出大专本科院校小学教育专业中开设高等数学不仅服务于基础教育,适应基础教育改革需求,也是通过教学培养学生正确的数学价值观和教育观,提升教师技能,健全教师情意,为将来正式进入小学教育领域奠定坚实基础。基于此,本文以大专本科院校小学教育专业强化高等数学教学的重要性为切入点,从教学内容、教学模式、专业需求、突出数学文化教学以及改革考核方式,与小学教师共建合作课程等多个方面探讨了如何在大专本科院校小学教育专业开展有效性高等数学教学的策略。

刘家新[5](2021)在《“课程思政”视域下初中数学教学设计研究 ——以函数教学为例》文中提出立德树人是我国教育的根本任务,加强对学生的思想政治教育,思想政治课是主渠道,在各学科教育中渗透思想政治教育也责无旁贷。在学科教学中融入思想政治的元素,使学科课程在育人中发挥应有的作用,是新时代教育工作者的使命。在文献研究的基础上,研究践行课程思政的理论模型,即确立辩证唯物主义观教育、家国情怀和爱国主义精神的教育、社会责任感教育、优良品德和个性品质教育这四个维度,从这四个维度出发将课程思政融入到初中数学教学设计之中,在数学教学中对学生进行思想政治教育。运用问卷调查法和访谈法,了解当前在初中数学教学中践行课程思政的现状;结合教学内容和学生特点,以初中函数教学为例,探索“课程思政”视域下的初中数学教学设计,并进行实践和效果检验,提出在初中数学教学中践行课程思政方法与途径。在初中数学教学中践行课程思政是必要的和可行的,将数学知识的学习与思政教育有机结合起来,既能实现在教学过程中对学生进行思想政治教育,又能通过思政案例的呈现激发学生的数学学习兴趣,调动学习的积极性,有助于对于数学专业知识的掌握。在初中数学教学设计中践行课程思政:学校要加强对课程思政教学改革的领导,建立科学的评价体系,实现课程思政资源和案例共享,保证课程思政的践行效果;教师要加强师德修养,树立在教学中践行课程思政的教育信念,深度挖掘思政元素,并在教学各环节中落实。

李超[6](2021)在《“高观点”下高中导数解题及教学研究》文中认为随着普通高中数学课程改革不断深入,《普通高中数学课程标准(2017年版2020年修订)》指出数学教师要理解与高中数学关系密切的高等数学内容,能够从更高的观点理解高中数学知识的本质,这对从事数学教育工作者的本体性知识(学科知识)提出了更高的要求.导数是连接高等数学和初等数学的重要桥梁,且部分导数试题的命制具有一定高等数学的背景.因此,这项研究选取高中导数内容,在“高观点”的指导下重点研究以下三个问题:(1)揭示部分高考导数试题具有的高等数学背景;(2)如何将高等数学的思想、观点和方法渗透到中学数学中去;(3)通过具体案例展示如何在“高观点”的指导下进行高中导数内容的解题和教学.这项研究通过对高中教师和学生的问卷调查,在“高观点”指导下研究高中导数内容的解题和教学,得出了以下两方面的结论:在解题方面,整理分析了近十年(以全国卷为主)具有高等数学背景的高考导数试题,导数试题的命题背景主要有四个方面:以高等数学中的基本定义和性质为命题背景、以高等数学中的重要定理和公式为命题背景、以着名不等式为命题背景、以高等数学中的重要思想方法为命题背景;总结了用“高观点”解决高考导数试题时常犯的四类错误:知识性错误、逻辑性错误、策略性错误、心理性错误;提出五项解题方法:创设引理破难题、洛氏法则先探路、导数定义避超纲、构造函数显神通、多元偏导先找点.在教学方面,通过对高中学生和高中教师进行问卷调查分析,从前人研究的基础上,提出“高观点”下高中导数教学的三个特点:衔接性、选择性、引导性;认为“高观点”下高中导数的教学应遵循四项基本的教学原则:严谨性原则、直观性原则、因材施教原则、量力性原则;提出相应的五项教学策略:开发例题,拓展升华策略、引入四规则,知识呈现多样化策略、先实践操作,后说理策略、融合信息技术,直观解释策略、引导方向,自主学习策略.

沈中宇[7](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中认为百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。

王改珍[8](2021)在《职前数学教师专业知识结构及水平的实证研究》文中指出随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。

王杰[9](2021)在《高观点下初中方程教学的主要问题与解决策略》文中研究指明方程是代数思想的起源。面对一个未知的数,我们希望求解它,那么我们利用和未知量有关的限制条件,再结合等量关系组成等式,我们就得到了有关未知量方程或者方程组。有了方程就相当于正式承认变量或者未知数能够作为一个独立的对象。从方程在课程标准中的变化来看,学生不仅仅需要掌握方程的解法,同时还需要学生掌握方程与不等式和函数之间的联系,也就是用函数的观点去看方程。最后需要让学生体会方程思想在解决问题中的便利性,注重培养学生逆向思维。同时也要注重借用方程学习的这一过程,培养学生的核心素养。本文先说明了方程这一内容在课程标准中的变化,再结合方程发展的历史,重点介绍了几种方程的解法,例如公式法,配方法、因式分解法、换元法,同时也介绍了一些方程组的解法。例如克拉默法则、矩阵法等等。这一部分是高等数学中的方程知识,作为教师必须要掌握这部分内容才能将“高观点”更好的融入教学。教师借助在教学中融入“高观点”,提高学生的核心素养和关键能力,为学生后续的学习产生深远的影响。为了更加详细的掌握学习者在学习方程过程中所遇到的问题,采用测试卷和调查问卷结合的方式,分析出真实存在的问题,为教师的教学提供必要的帮助。测试卷将设置五种题型,考察学习者对方程知识的掌握程度。通过分析测试卷,所获得的结论是:(1)有部分学生对生活中或者其他学科中存在的等量关系不太熟悉。(2)学生对二次方程的根的判断和对含有参数的方程组成立条件的判断存在模糊不清的现象。(3)学生在解方程时,方程的解法过于单一,并且对于解方程的通性、通法掌握有点欠缺。(4)学生对方程概念的理解也存在疏忽。(5)学生在方程应用题部分,尤其是对函数与方程结合的应用题存在不少问题。调查问卷主要是为了分析出学生在学习方程时会遇到的问题,调查问卷所获得的结论是:(1)有部分学生在课堂方程学习过程中缺少思考,没有对方程进行一题多解的习惯。(2)学生在做方程内容的作业时,存在不认真完成,不检验方程解的情况。(3)学生在课后没有认真复习课上学习到的方程的解法以及相关概念。(4)部分学生对自己存在错误的方程习题不及时进行错题整理与归纳总结。将“高观点”融入课堂教学的实际执行者是教师,因此,本文采用调查问卷的方式,调查不同学校和年级的中学教师将“高观点”融入教学的实际情况。通过调查后所获得的结论为:(1)大部分的教师都认为“高观点”对中学数学是存在影响的,对于教材分析也会联系到“高观点”。(2)有部分教师会去阅读渗透“高观点”的数学参考书。(3)部分教师会利用已经下放到教材里的高等数学的知识去解决有关方程问题。(4)总的来看,新教师比老教师更乐于利用“高观点”。最后结合对学生和教师的调查结果提出一些将“高观点”融入教学的建议,包括等式概念的教学、方程解法的教学、方程应用的教学以及函数、方程、不等式关系的教学。同时为了更好的进行这些教学又对中学学校和一线中学教师提出一些必要的建议。

魏薇[10](2020)在《基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例》文中研究说明数学学习困难一直都在基础教育领域备受关注,近几年来更引起高校的广泛关注。国内外对中小学数学学习困难的评估和诊断、分类和成因分析以及补救和转化工作都作了较为系统的研究,并取得颇有价值的成果。但是,大学生正处于青春期向成人期过渡这一特殊阶段,无法直接利用初等数学的一些研究来指导高等数学的教育实践。那么在大学阶段,造成“数学学习困难”的原因有哪些?有什么有效的教学方法能够帮助实现大学生数学学习困难的转化呢?笔者总结了以往学者大量研究成果的基础上,对大学生数学学习困难进行了再定义和成因分析,并根据这些成因寻找切实有效的教学方法,在大学生数学学习困难领域开展教学转化研究。具体来说,整个研究分三个阶段:1.收集与大学生数学学习困难相关的文献资料,从各研究中总结其学习特点进行再定义;通过文献分析初步整理出大学生数学学习困难原因主要分为以下三个维度:教学因素、学生心理和外部环境因素,其中学生心理作为内部动机是主导因素,也应是教学转化的主要方向。可细分为学习动机与归因、学习思维与习惯、学习方法与策略三个方面;通过教学策略研究发现“结构教学法”能有效激发学生学习的自主性,增强联系新知旧知及各方面数学素养的能力。因此提出将“结构教学法”应用于高等数学课堂,探索其对大学生数学学习困难转化的效果。2.通过对各高校问卷调查的数据进行因子分析,验证了各因子与成因分析基本一致,说明成因分析中分类的准确性。并利用访谈共同为下一阶段的教学设计做指导。3.通过“结构教学法”在高等数学课堂中进行教学设计与实施,对比学生在动机与归因、思维与习惯、方法与策略方面发生的变化,来说明转化研究的实际效果。研究结果表明,“结构教学法”确实能让大部分学生对数学的学习态度有所转变,对自身的评价更为准确,对学习方法会适当作出调整,学习数学也不再只停留在知识表面,而是挖掘一切与其有关的因素,这证明他们的学习兴趣也得到了一定的激发。进一步说明,“结构教学法”对于激发学生动机、转变学习方法、培养良好学习习惯是有一定效果的。也用事实证明了大学生数学学习困难只是一种暂时的状态,通过合适、有效的教学转化,可以使学生们的潜能得以发挥,改变数学学习困难的局面。因此,将“结构教学法”应用于大学生数学学习困难的转化研究是有积极意义的,希望本文为该领域的研究提供有价值的参考信息。

二、“数学活动”观与高等数学教学(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、“数学活动”观与高等数学教学(论文提纲范文)

(1)数学文化融入高等数学教学的有效途径和方法(论文提纲范文)

一、数学文化融入高等数学教学的价值
    (一)数学文化的融入可以激发学生学习高等数学的兴趣
    (二)融入数学文化能提高学生的艺术素质与审美能力
    (三)融入数学文化能提高学生的综合素质和创新能力
三、数学文化融入高等数学教学的有效途径和方法
    (一)改革与完善高等数学的教学方法
    (二)在高等数学教学中引入数学史和数学家的励志故事
    (三)提高教师自身的数学文化修养
    (四)组织丰富的高等数学教学活动
三、结束语

(2)提高高职院校高等数学教学有效性的实践研究(论文提纲范文)

一、高职院校高等数学教学现状分析
    (一)生源复杂多元
    (二)学生综合素质参差不齐
    (三)教师教学观念亟需更新
    (四)课程评价方式传统简单
二、提高高职院校高等数学教学有效性的策略
    (一)加强学习,提升高等数学教师的教学能力
        1. 提升整合教学资源的能力。
        2. 提升研究学生、学情的能力。
        3. 提升组织教育教学活动的能力。
    (二)加强研究,做好高等数学与中学数学的衔接教学
        1. 查漏补缺,助力学生夯实基础。
        2. 强化概念,培养学生科学思维。
        3. 构建模型,助力学生提升能力。
    (三)全面推进课堂教学改革
        1. 优化教学内容,降低教学难度。
        2. 改进教学方法,加强学法指导。
        3. 渗透数学文化,激发学习兴趣。
        4. 改革评价模式,促进全面发展。
        5. 融入课程思政,强化立德树人。
    (四)构建和谐、民主的师生关系
三、结语

(3)数学史融入高等数学教学的意义和方法探究(论文提纲范文)

0 引言
1 数学史概述
2 数学史融入高等数学教学的意义
    2.1 促进高等数学教学的数学观形成
    2.2 激发学生的数学学习兴趣
    2.3 培养学生数学核心素养
3 数学史融入高等数学教学的实践方法
    3.1 树立新的高等数学教学观念
    3.2 创新高等数学教学方式
    3.3 拓宽高等数学教学载体
4 结束语

(4)大专本科院校小学教育专业高等数学课程教学探析(论文提纲范文)

一、大专本科院校小学教育专业强化高等数学教学的重要性
二、大专本科院校小学教育专业高等数学教学实施策略
    (一)注重教学内容,突出师范性
        1.教学内容要与小学数学教学内容具有关联度
        2.教学内容要助于培养学生全面数学观
        3.教学内容要与相关数学教育问题相结合
    (二)发展拓展式教学模式,提高学生教学技能
        1.教学语言规范严谨,训练学生基本教学素养
        2.强调数学教学思路,训练学习思维的逻辑性
        3.引入建模思想,优化解决问题的策略
    (三)结合专业需求,优化教学结构
    (四)突出数学文化教学,培养学生教师情意
    (五)改革考核方式,与小学教师共建合作课程

(5)“课程思政”视域下初中数学教学设计研究 ——以函数教学为例(论文提纲范文)

摘要
abstract
1 绪论
    1.1 问题提出
    1.2 研究意义及目的
    1.3 研究内容、研究方法和研究思路
    1.4 研究重点、难点及创新点
    1.5 论文结构
2 文献综述、核心概念界定与理论基础
    2.1 文献综述
    2.2 核心概念界定
    2.3 理论基础
3 研究设计
    3.1 研究假设
    3.2 研究对象
    3.3 研究工具
    3.4 研究实施过程
    3.5 研究中需要注意的问题
4 调查研究
    4.1 问卷调查
    4.2 教师访谈
    4.3 践行课程思政存在的问题
5 教学设计
    5.1 设计依据
    5.2 框架与切入点
    5.3 教学设计示例
6 教学实践
    6.1 示例:“二次函数”第一节的第一课时
    6.2 评析
    6.3 效果对比分析
7 研究结论、建议与展望
    7.1 研究结论
    7.2 研究建议
    7.3 研究不足
    7.4 研究展望
参考文献
附录
    附录1:初中数学教学中课程思政践行现状教师调查问卷
    附录2:学生测试题(以二次函数为例)
    附录3:“课程思政”视域下初中数学教学设计研究教师访谈提纲
    附录4:“课程思政”视域下初中数学教学设计研究学生访谈提纲
    附录5:教师访谈示例
致谢

(6)“高观点”下高中导数解题及教学研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究的背景
        1.1.1 数学教师专业素养发展的需要
        1.1.2 优秀高中学生自身发展的需求
        1.1.3 导数在高中数学教学及高考中的地位
    1.2 核心名词界定
        1.2.1 高观点
        1.2.2 导数
        1.2.3 数学教学
        1.2.4 解题
    1.3 研究的内容和意义
        1.3.1 研究的内容
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.2 研究计划
        1.4.3 研究的技术路线
    1.5 论文的结构
第2章 文献综述
    2.1 文献搜集
    2.2 高观点下中学数学的研究现状
        2.2.1 国外研究的现状
        2.2.2 国内的研究现状
    2.3 高观点下高中导数的研究现状
        2.3.1 国外研究的现状
        2.3.2 国内研究的现状
    2.4 文献述评
    2.5 小结
第3章 研究设计
    3.1 研究的目的
    3.2 研究的方法
        3.2.1 文献研究法
        3.2.2 问卷调查法
        3.2.3 案例研究法
    3.3 研究工具及研究对象选取
    3.4 研究伦理
    3.5 小结
第4章 调查研究及结果分析
    4.1 教师调查问卷的设计及结果分析
        4.1.1 调查问卷设计
        4.1.2 实施调查
        4.1.3 调查结果分析
        4.1.3.1 问卷的信度分析
        4.1.3.2 问卷的效度分析
        4.1.3.3 问卷的结果分析
    4.2 学生调查问卷的设计及结果分析
        4.2.1 调查问卷设计
        4.2.2 实施调查
        4.2.3 调查结果及分析
    4.3 调查结论
    4.4 小结
第5章 “高观点”下高中导数的解题研究
    5.1 “高观点”下高考导数试题的命题背景
        5.1.1 以高等数学中的基本定义和性质为命题背景
        5.1.1.1 高斯函数
        5.1.1.2 函数的凹凸性
        5.1.2 以高等数学中的重要定理或公式为命题背景
        5.1.2.1 洛必达法则
        5.1.2.2 拉格朗日中值定理
        5.1.2.3 拉格朗日乘数法
        5.1.2.4 柯西中值定理
        5.1.2.5 柯西函数方程
        5.1.2.6 泰勒公式与麦克劳林公式
        5.1.2.7 极值的第三充分条件
        5.1.2.8 两个重要极限
        5.1.2.9 欧拉常数
        5.1.3 以着名不等式为命题背景
        5.1.3.1 伯努利不等式
        5.1.3.2 詹森不等式
        5.1.3.3 对数平均不等式
        5.1.3.4 斯外尔不等式
        5.1.3.5 惠更斯不等式
        5.1.3.6 约当不等式
        5.1.4 以高等数学中的重要思想方法为命题背景
        5.1.4.1 极限思想
        5.1.4.2 积分思想
        5.1.4.3 (常微分)方程思想
    5.2 “高观点”下高考导数解题中常见的四类错误
        5.2.1 知识性错误
        5.2.1.1 柯西中值定理的误用
        5.2.1.2 拉格朗日中值定理的误用
        5.2.1.3 多元函数求最值,不注意边界情况
        5.2.1.4 不注意洛必达法则使用的前提
        5.2.2 逻辑性错误
        5.2.2.1 循环论证
        5.2.2.2 混淆充分条件和必要条件的逻辑关系
        5.2.3 策略性错误
        5.2.4 心理性错误
    5.3 “高观点”下高考导数解题的方法
        5.3.1 创设引理破难题
        5.3.2 洛氏法则先探路
        5.3.3 导数定义避超纲
        5.3.4 构造函数显神通
        5.3.5 多元偏导先找点
    5.4 “高观点”下高考导数解题研究的案例
        5.4.1 “高观点”视角研究解题方法
        5.4.2 “高观点”视角研究试题的命制
    5.5 小结
第6章 “高观点”下高中导数的教学研究
    6.1 “高观点”下高中导数教学的教学特点
        6.1.1 衔接性
        6.1.2 选择性
        6.1.3 引导性
    6.2 “高观点”下高中导数教学的教学原则
        6.2.1 严谨性原则
        6.2.2 直观性原则
        6.2.3 因材施教原则
        6.2.4 量力性原则
    6.3 “高观点”下高中导数教学的教学策略
        6.3.1 开发例题,拓展升华策略
        6.3.2 引入四规则,知识呈现多样化策略
        6.3.3 先实践操作,后说理策略
        6.3.4 融合信息技术,直观解释策略
        6.3.5 引导方向,自主学习策略
    6.4 “高观点”下高中导数的教学案例
        6.4.1 常微分方程视角下的教学案例
        6.4.2 微积分视角下的教学案例
        6.4.3 “泰勒公式”的教学案例
    6.5 小结
第7章 结论与反思
    7.1 研究的结论
    7.2 研究的不足及展望
    7.3 结束语
参考文献
附录 A 教师调查问卷
附录 B 学生调查问卷
攻读学位期间发表的论文和研究成果
致谢

(7)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 教师教育者的专业发展需要关注
        1.1.2 数学教师教育者的研究值得重视
        1.1.3 数学教师教育者的专业知识有待探索
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 论文结构
第2章 文献述评
    2.1 数学教师教育者的专业知识
        2.1.1 数学教师教育者的专业知识框架
        2.1.2 数学教师教育者的专业知识测评
        2.1.3 文献小结
    2.2 数学教师教育者的专业发展
        2.2.1 数学教师教育者的专业发展框架
        2.2.2 数学教师教育者的专业发展调查
        2.2.3 文献小结
    2.3 数学教师教育者的工作实践
        2.3.1 数学教师教育课堂的学习任务框架
        2.3.2 数学教师教育课堂的学习任务实践
        2.3.3 文献小结
    2.4 文献述评总结
第3章 研究方法
    3.1 研究设计
        3.1.1 文献分析与框架确立
        3.1.2 问卷调查与深度访谈
        3.1.3 现场观察与案例分析
    3.2 研究对象
        3.2.1 专家论证对象
        3.2.2 问卷调查对象
        3.2.3 深度访谈对象
        3.2.4 案例研究对象
    3.3 研究工具
        3.3.1 论证手册
        3.3.2 调查问卷
        3.3.3 访谈提纲
        3.3.4 观察方案
    3.4 数据收集
        3.4.1 专家论证
        3.4.2 问卷调查
        3.4.3 深度访谈
        3.4.4 现场观察
    3.5 数据分析
        3.5.1 专家论证
        3.5.2 问卷与访谈
        3.5.3 现场观察
第4章 研究结果(一):面向教师教育的数学知识框架
    4.1 文献分析
        4.1.1 已有框架选取
        4.1.2 相关成分析取
        4.1.3 相关类别编码
    4.2 框架构建
        4.2.1 相关类别合并
        4.2.2 相应成分生成
        4.2.3 初步框架构建
    4.3 框架论证
        4.3.1 第一轮论证
        4.3.2 第二轮论证
        4.3.3 第三轮论证
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识
    5.1 学科内容知识
        5.1.1 一般内容知识
        5.1.2 专门内容知识
        5.1.3 关联内容知识
    5.2 教学内容知识
        5.2.1 内容与学生知识
        5.2.2 内容与教学知识
        5.2.3 内容与课程知识
    5.3 高观点下的数学知识
        5.3.1 学科高等知识
        5.3.2 学科结构知识
        5.3.3 学科应用知识
    5.4 数学哲学知识
        5.4.1 本体论知识
        5.4.2 认识论知识
        5.4.3 方法论知识
    5.5 总体分析
        5.5.1 学科内容知识
        5.5.2 教学内容知识
        5.5.3 高观点下的数学知识
        5.5.4 数学哲学知识
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识
    6.1 案例1
        6.1.1 第一轮观察:平均值不等式
        6.1.2 第二轮观察:对数的概念
        6.1.3 案例1 总体分析
    6.2 案例2
        6.2.1 第一轮观察:幂函数的概念
        6.2.2 第二轮观察:函数的基本性质
        6.2.3 案例2 总体分析
    6.3 案例3
        6.3.1 第一轮观察:幂函数的概念
        6.3.2 第二轮观察:出租车运价问题
        6.3.3 案例3 总体分析
    6.4 案例4
        6.4.1 第一轮观察:反函数的概念
        6.4.2 第二轮观察:反函数的图像
        6.4.3 案例4 总体分析
    6.5 跨案例分析
        6.5.1 学科内容知识
        6.5.2 教学内容知识
        6.5.3 高观点下的数学知识
        6.5.4 数学哲学知识
        6.5.5 案例总体分析
第7章 研究结论及启示
    7.1 研究结论
        7.1.1 面向教师教育的数学知识框架
        7.1.2 高中数学教研员具备的面向教师教育的数学知识
        7.1.3 高中数学教研活动中反映的面向教师教育的数学知识
    7.2 研究启示
        7.2.1 教师教育者的专业标准制订需要关注学科性
        7.2.2 数学教师教育者的专业培训需要提升针对性
        7.2.3 数学教师专业发展项目规划需要增加多元性
    7.3 研究局限
    7.4 研究展望
        7.4.1 拓展数学教师教育者的专业知识研究
        7.4.2 深入数学教师教育者的专业发展研究
        7.4.3 延伸数学教师教育者的工作实践研究
参考文献
附录
    附录1 论证手册(第一轮)
    附录2 论证手册(第二轮)
    附录3 论证手册(第三轮)
    附录4 调查问卷(第一版)
    附录5 调查问卷(第二版)
    附录6 调查问卷(第三版)
    附录7 调查问卷(第四版)
    附录8 调查问卷(第五版)
    附录9 访谈提纲
    附录10 观察方案
作者简历及在学期间所取得的科研成果
致谢

(8)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    第一节 研究背景
    第二节 研究问题
    第三节 研究意义
    第四节 论文结构
第二章 文献综述
    第一节 教师知识
        一.知识的内涵及分类
        二.教师知识的分类
    第二节 数学教师知识
        一.数学教师学科知识
        二.数学教师学科教学知识
        三.数学教师知识相关文献的量化分析
    第三节 职前数学教师知识
        一.职前数学教师知识的现状及来源
        二.职前数学教师知识中某类具体知识
        三.职前数学教师综合性知识和技能
        四.中外职前数学教师知识的对比
    第四节 本章小结
第三章 研究设计与实施
    第一节 研究思路与方法
        一.研究思路
        二.研究方法
    第二节 相关概念界定
        一.教师知识
        二.数学教师专业知识
        三.职前教师
        四.知识结构
    第三节 理论基础与框架
        一.数学教师专业知识分类框架构建
        二.职前数学教师专业知识分析层次建构
    第四节 研究的具体过程
第四章 教师视角下的合格数学教师专业知识结构
    第一节 教师视角下合格数学教师专业知识结构描述分析
    第二节 教师视角下合格数学教师专业知识结构聚类分析
    第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析
        一.不同教龄教师对合格数学教师各类知识权重看法的差异分析
        二.不同职称教师对合格数学教师各类知识权重看法的差异分析
        三.不同称号教师对合格数学教师各类知识权重看法的差异分析
        四.不同学历教师对合格数学教师各类知识权重看法的差异分析
    第四节 教师视角下合格数学教师各类知识权重看法的质化分析
    第五节 本章小结
第五章 职前数学教师专业知识现状分析
    第一节 职前数学教师专业知识掌握情况的水平划分
        一.职前数学教师专业知识测试成绩整体描述
        二.职前数学教师测试总成绩的水平分布
        三.职前数学教师主观题作答情况的水平分析
    第二节 职前数学教师专业知识的实际结构
    第三节 不同类型学校职前数学教师专业知识得分情况的差异分析
        一.不同类型学校职前数学教师总成绩的差异分析
        二.不同类型学校职前数学教师各类知识得分的差异分析
    第四节 不同性别职前数学教师得分情况的差异分析
        一.不同性别职前数学教师总成绩的差异分析
        二.不同性别职前数学教师各类知识得分的差异分析
    第五节 各类数学专业知识之间的关系分析
        一.各类数学专业知识得分之间的相关性分析
        二.数学学科知识对数学教学知识的影响分析
        三.数学学科知识对数学课程知识的影响分析
    第六节 本章小结
第六章 职前数学教师专业知识实际结构与期望结构的对比分析
    第一节 职前数学教师专业知识实际结构与期望结构的整体比较
    第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较
        一.前水平的职前数学教师专业知识结构的比较
        二.识记水平的职前数学教师专业知识结构的比较
        三.关联水平的职前数学教师专业知识结构的比较
        四.综合水平的职前数学教师专业知识结构的比较
    第三节 职前数学教师专业知识结构的讨论
    第四节 本章小结
第七章 结论与建议
    第一节 研究的结论
    第二节 研究的建议
    第三节 研究的局限性与展望
参考文献
附录
    附录1 中学数学教师知识结构状况调查与访谈提纲
    附录2 数学教师专业知识分类框架
    附录3 中学数学教师知识权重调查问卷
    附录4 教师资格考试2014-2018 试题汇总
    附录5 职前数学教师专业知识与基本能力测试
    附录6 职前数学教师专业知识与基本能力测试参考答案
    附录7 职前数学教师专业知识结构及其培养策略访谈提纲
后记
在学期间公开发表论文及着作情况

(9)高观点下初中方程教学的主要问题与解决策略(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究意义
    1.4 研究方法
第二章 文献综述与理论基础
    2.1 相关概念界定
    2.2 国内外研究现状
        2.2.1 国外研究现状
        2.2.2 国内研究现状
        2.2.3 文献述评
    2.3 理论基础
        2.3.1 数学与数学教育相关理论
        2.3.2 教师专业发展相关理论
第三章 方程的发展及教学要求
    3.1 方程的发展历史
    3.2 初中课程标准中有关方程的内容
    3.3 方程的教学意义
第四章 高观点下对初中方程的概念及主要解法的解读
    4.1 方程概念与分类
        4.1.1 等式的定义
        4.1.2 关于方程的定义
        4.1.3 方程的分类
    4.2 方程同解定理
        4.2.1 同解方程的原理
        4.2.2 导出方程原理
    4.3 方程解法综述
        4.3.1 方程和方程组解法的一般原理
        4.3.2 公式法
        4.3.3 因式分解法
        4.3.4 换元法
        4.3.5 方程组的解法
    4.4 方程应用及其应用题
    4.5 方程与函数、不等式关系分析
        4.5.1 不等式的定义及性质
        4.5.2 三者之间的关系
第五章 高观点下对初中生方程学习现状的调查及分析
    5.1 调查方案的设计与实施
        5.1.1 调查目的
        5.1.2 调查内容
        5.1.3 调查对象
        5.1.4 调查实施过程
    5.2 调查的结果分析
        5.2.1 测试卷的情况分析
        5.2.2 测试卷的调查结论
        5.2.3 调查问卷的结果分析
        5.2.4 问卷调查的结论
    5.3 教师访谈
第六章 中学教师利用“高观点”指导教学的调查及分析
    6.1 调查目的及意义
    6.2 调查对象
    6.3 信度、效度分析
        6.3.1 信度分析
        6.3.2 效度分析
    6.4 调查结果及分析
第七章 高观下提高初中方程教学质量的策略与建议
    7.1 关于方程概念的教学
    7.2 关于方程解法的教学
    7.3 关于方程应用的教学
    7.4 关于方程与函数、不等式关系的教学
第八章 结论和建议
    8.1 结论
    8.2 建议
        8.2.1 对一线中学数学教师的建议
        8.2.2 对中学学校的建议
参考文献
附录1:测试卷
附录2:初中生方程学习现状调查问卷
附录3:教师采用高观点进行教学现状调查问卷
致谢

(10)基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究对象
    1.4 研究目的
    1.5 研究意义
        1.5.1 理论意义
        1.5.2 现实意义
    1.6 研究方法
第2章 文献综述与相关理论
    2.1 学习困难的研究发展历程
    2.2 国内外大学生数学学习困难相关研究
        2.2.1 国外大学生数学学习困难相关研究
        2.2.2 国内大学生数学学习困难相关研究
    2.3 大学生数学学习困难概念界定
    2.4 大学生数学学习困难成因分析和转化策略分析
        2.4.1 大学生数学学习困难成因分析
        2.4.2 大学生数学学习困难转化策略分析
    2.5 结构教学法及理论基础
        2.5.1 高等数学结构教学法的提出
        2.5.2 结构教学法理论基础
        2.5.3 结构教学法在高等数学课堂应用的实际意义
        2.5.4 结构教学法的操作注意事项
第3章 大学生数学学习困难调查与分析
    3.1 研究假设
    3.2 可行性分析
    3.3 被试选取
    3.4 研究工具与施测
        3.4.1 《高等数学学习困难调查问卷》
        3.4.2 《高等数学教学方法访谈提纲》
    3.5 统计方法
第4章 大学生数学学习困难因子分析与访谈分析
    4.1 因子分析
    4.2 访谈分析
第5章 结构化教学设计案例研究——以无穷小为例
    5.1 结构化教学程序设计
    5.2 结构化教学过程设计
    5.3 结构化教学评价与访谈
第6章 研究结论
    6.1 研究的主要结论
    6.2 研究的创新之处
    6.3 研究的局限之处
    6.4 展望
参考文献
附录 A《高等数学学习困难调查问卷》
附录 B《高等数学教学方法访谈提纲》
致谢

四、“数学活动”观与高等数学教学(论文参考文献)

  • [1]数学文化融入高等数学教学的有效途径和方法[J]. 王玉海,于卓. 吉林省教育学院学报, 2022(01)
  • [2]提高高职院校高等数学教学有效性的实践研究[J]. 陈伟方. 江苏教育研究, 2021(36)
  • [3]数学史融入高等数学教学的意义和方法探究[J]. 沈小雨. 江西电力职业技术学院学报, 2021(07)
  • [4]大专本科院校小学教育专业高等数学课程教学探析[J]. 徐校会. 发明与创新(职业教育), 2021(07)
  • [5]“课程思政”视域下初中数学教学设计研究 ——以函数教学为例[D]. 刘家新. 天津师范大学, 2021(09)
  • [6]“高观点”下高中导数解题及教学研究[D]. 李超. 云南师范大学, 2021(08)
  • [7]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
  • [8]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
  • [9]高观点下初中方程教学的主要问题与解决策略[D]. 王杰. 合肥师范学院, 2021(09)
  • [10]基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例[D]. 魏薇. 上海师范大学, 2020(07)

标签:;  ;  ;  ;  ;  

“数学活动”理念与高等数学教学
下载Doc文档

猜你喜欢