问:硕士小论文和大论文不相关可以吗
- 答:不相关是不可以的。
正常来讲,小论文应该是大论文的一部分。但是在实际研究中,小论文研究内容可能不完全属于大论文。所以小论文与大论文有交叉,比较相对应即可,无需完全对应。
发表小论文的作用:
1、小论文可能是研究生毕业条件要求。很多学校要求研究生毕业必须要发表论文, 省级、国家级的,有的甚至还要求发表北大核心期刊,而具体发表要求根据各自学院、专业而定。
2、小论文是评奖学金的加分项。虽然说研究生发表论文不一定就可以评奖学金,因为论文只是加分项,不是起决定作用的,但发表论文可以加分,虽然比重并不大,但是每年有很多同学评奖时可能就差那么两三分,与奖学金失之交臂,所以一般都是要发的。
3、小论文有助于找工作、评职称。研究生毕业后,论文通常对找工作帮助不大。但比如当老师,进研究所等等注重学问研究的工作单位,那论文就是敲门砖。普通的论文是没多大价值,但一些核心、EI、SCI,上档次的论文对找工作、评职称都会发挥比较大的作用。
问:从相关性角度来说,一般多少就认为相关性比较高
- 答:相关系数的强弱仅仅看系数的大小是不够的。一般来说,取绝对值后,0-0.09为没有相关性,0.3-弱,0.1-0.3为弱相关,0.3-0.5为中等相关,0.5-1.0为强相关。但是,往往你还需要做显著性差异检验,即t-test,来检验两组数据是否显著相关,这在SPSS里面会自动为你计算的。样本书越是大,需要达到显著性相关的相关系数就会越小。所以这关系到你的样本大小,如果你的样本很大,比如说超过300,往往分析出来的相关系数比较低,比如0.2,因为你样本量的增大造成了差异的增大,但显著性检验却认为这是极其显著的相关。一般来说,我们判断强弱主要看显著性,而非相关系数本身。但你在撰写论文时需要同时报告这两个统计数据。
问:相关系数多少算具有相关性?
- 答:相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
相关系数r的绝对值一般在0.8以上,认为A和B有强的相关性。0.3到0.8之间,可以认为有弱的相关性。0.3以下,认为没有相关性。
扩展资料
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
参考资料: - 答:相关系数的强弱仅仅看系数的大小是不够的。一般来说,取绝对值后,0-0.09为没有相关性,0.3-弱,0.1-0.3为弱相关,0.3-0.5为中等相关,0.5-1.0为强相关。但是,往往你还需要做显著性差异检验,即t-test,来检验两组数据是否显著相关,这在SPSS里面会自动为你计算的。
样本书越是大,需要达到显著性相关的相关系数就会越小。所以这关系到你的样本大小,如果你的样本很大,比如说超过300,往往分析出来的相关系数比较低,比如0.2,因为你样本量的增大造成了差异的增大,但显著性检验却认为这是极其显著的相关。
一般来说,我们判断强弱主要看显著性,而非相关系数本身。但你在撰写论文时需要同时报告这两个统计数据。 - 答:在说明变量之间线性相关程度时,根据经验,按照相关系数的大小将相关程度分为以下几种情况:|rl≥0.8时,可视为两个变量之间高度相关;0.5≤|rl<0.8时,可视为中度相关;0.3≤|rl<0.5时,视为低度相关; |rl<0.3时,说明两个变量之间的相关程度极弱,可视为不相关。
在实际问题中,相关系数一般都是用样本数据计算得到的,因而带有一定的随机性,尤其 是样本容量比较小时,这种随机性更大,此时,用样本相关系数估计总体相关系数可信度会受到很大质疑,也就是说,样本相关系数并不能说明样本来自的两个总体是否具有显著线性关系。因此,需要对其进行统计推断,通过检验的方法确定变量之间是否存在相关性,即要对总体相关系数ρ=0进行显著性检验。
在X. Y都服从正态分布,及原假设(ρ= 0)为真时,统计量
服从自由度为n-2的T分布。当|t|>+(或p<a)时,拒绝原假设,表明样本相关系数r是 显著的;若|t|≤号(或p≥a),不能拒绝原假设,表明r在统计上是不显著的,两总体不存在 显著的相关关系。
—— 汪冬华《多元统计分析与SPSS应用》 - 答:一、一般来说,取绝对值后,0-0.09为没有相关性,0.3-弱,0.1-0.3为弱相关,0.3-0.5为中等相关,0.5-1.0为强相关。但是,往往还需要做显著性差异检验,即t-test,来检验两组数据是否显著相关,这在SPSS里面会自动计算的。
二、样本书越是大,需要达到显著性相关的相关系数就会越小。所以这关系到样本大小,如果样本很大,比如说超过300,往往分析出来的相关系数比较低,比如0.2,因为样本量的增大造成了差异的增大,但显著性检验却认为这是极其显著的相关。
三、判断强弱主要看显著性,而非相关系数本身。但在撰写论文时需要同时报告这两个统计数据。