一、采用铜质冷却壁、延长高炉寿命(论文文献综述)
卢正东[1](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中进行了进一步梳理现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。
刘仕虎,华建明[2](2020)在《宝钢高炉铜冷却壁运行维护探析》文中进行了进一步梳理对宝钢1号、3号高炉铜冷却壁运行维护实践进行了总结,并就今后我国新建、大修高炉是否要配置铜冷却壁,以及已经配置铜冷却壁的高炉如何使用和维护提出了建议。从1号高炉第一根水管破损后,即利用高炉定修机会,制定专项方案对铜冷却壁做了一系列调查,获得了铜冷却壁磨损特点、磨损速率等重要数据,并以此为依据,对铜冷却壁采取了一系列有针对性的维护措施,取得初步效果。
王得刚,全强,祁四清,陈秀娟,索延帅[3](2020)在《高炉炉体合理冷却结构探析》文中提出简要分析了铸铁冷却壁、铜冷却壁、板壁结合冷却结构等几种常见的高炉炉体冷却结构存在的问题,阐明了铜钢复合冷却壁、微型冷却器、组合式冷却壁等炉体冷却结构的性能特点。认为高炉炉体合理的冷却结构,需要同时具备充足的冷却能力和良好的机械性能,应该是既无过热又无过冷,能够形成稳定的渣皮,对冷却设备本体实现保护,以降低冷却设备的热负荷,减少炉料的机械磨损和有害元素的侵蚀。
牛群[4](2020)在《长寿高炉炉缸炉底影响因素研究》文中指出炉缸寿命是当前大高炉长寿的决定性因素之一。只有掌握了炉缸内部铁水流动、炉缸焦炭、炭砖及其保护层之间的交互作用规律,才能找出延长炉缸寿命的措施。铁水对炉缸侧壁的冲刷侵蚀是导致炉缸寿命短的主要原因之一。炉缸长寿的关键是在炭砖热面凝结一层渣铁壳,隔离炙热铁水与炭砖的直接接触。炭砖附近的铁水流速和炭砖热面温度是影响渣铁壳凝结的主要因素。影响炉缸侧壁附近铁水流速的主要因素有(1)死料柱焦炭行为(死料柱空隙度分布、焦炭粒度和焦炭密度等);(2)铁口维护制度;(3)炉缸工作状态(死料柱浮起高度和中心透液性等)。砌筑和冷却良好的高炉,如果炭砖形成脆化层,会降低炭砖的导热性能,使炭砖热面温度升高,不利于炭砖热面渣铁壳的新生和稳定存在,这也是导致炉缸寿命短的主要原因之一。本文通过炉缸破损调研、数值仿真和热态实验三种方法对长寿炉缸炉底的影响因素进行了研究,加深了对炉缸内部死料柱焦炭、炭砖脆化层、渣铁壳和炉缸铁水流动规律的认识,对高炉炉缸设计和高炉操作有一定的指导意义。本文首先通过2800m3和5500 m3工业高炉炉缸破损调研的方法详细研究了风口以下1.5m至炉底之间不同炉缸高度和不同径向位置死料柱焦炭的无机矿物组成、石墨化程度、粒度分布、强度和死料柱空隙度分布。结果表明,2800m3工业高炉风口以下2.5m至炉底之间死料柱焦炭内部填充了大量高炉渣。在5500 m3高炉炉缸破损调研中也发现了大量高炉渣浸入风口以下1.8m至铁口中心线之间死料柱焦炭中。死料柱焦炭无机矿物质含量随着距风口距离的增加而增加,平均含量为45%。大部分死料柱焦炭质量是相同条件下入炉焦炭质量的1.43-2.21倍。死料柱焦炭高度石墨化,且越靠近炉底,焦炭粉末石墨化程度越高。2800 m3和5500m3高炉死料柱焦炭平均粒径在直径方向上分别呈“M”和倒“V”型,焦炭平均粒径分别为28.7mm和23.5mm,分别较入炉焦炭降低了 47%和56%。靠近死料柱底部附近,死料柱空隙度随着距风口距离和距炉墙距离的增加而降低,平均空隙度为0.3。其次,在炉缸死料柱焦炭行为研究的基础上,建立了包括死料柱和泥包在内的5500 m3高炉炉缸铁水流动数学模型,研究了不同铁口维护制度(铁口深度、铁口倾角和双铁口出铁等)和不同炉缸工作状态(死料柱浮起高度和中心透液性等)对炉缸侧壁附近铁水流速的影响。结果表明,增加出铁口深度、铁口倾角为10°和选择夹角为180°的双铁口出铁有利于降低炉缸侧壁附近的铁水流速,延长高炉炉缸寿命。当死料柱中心、中间和边缘空隙度分别为0.2、0.3和0.35时,炉缸炉底交界面附近的铁水流速随着死料柱浮起高度(0.8m→0.1m)的降低而大幅度增加,这表明死料柱小幅度浮起可能导致炉缸“象脚状”侵蚀。死料柱浮起高度处于0.6m-0.8m之间有利于高炉炉缸长寿。死料柱沉坐和浮起时,只有当死料柱中心透液性较差区域(空隙度为0.1)分别发展为炉缸直径的26%和50%时才会引起炉缸侧壁附近铁水流速增加。然后,通过2800m3高炉炉缸破损调研分析了碱金属和锌对炉缸炭砖的蚀损机理和炭砖凝结渣铁壳的形成机理。在2800m3高炉炉缸残余炭砖脆化层中含有大量的Zn2SiO4、KA1SiO4、ZnO、KA1Si2O6及少量的 ZnS 和ZnAl2O4。结合当前炭砖和残余炭砖脆化层矿物质组成,揭示了炭砖脆化层的形成机理。在炉缸炭砖热面凝结层和炉底陶瓷垫中均发现了高炉渣的存在,凝结层中的高炉渣主要来源于浸入到焦炭内部的高炉渣,而不是来源于入炉焦炭灰分。最后,设计建造了模拟高炉炉缸冶炼过程的热态实验炉。在炭砖冷面设计有冷却水管模拟炉缸冷却壁。三相交流电电极作为加热源,保证渣铁水温度在1550℃左右。通过热态实验炉炉底吹氮气搅拌熔池来模拟炉缸渣铁水流动。实验发现,当炭砖热面温度低于渣铁壳凝固温度,在炭砖热面就可以形成渣铁壳。在该热态实验中通过在炉缸炭砖中产生钾、钠和锌蒸气,模拟了高炉炉缸持续的钾、钠和锌蒸气对炭砖的破坏。总之,通过本文研究表明,高炉渣通过死料柱焦炭的运动可以被带入铁口以下炉缸区域。由于死料柱焦炭浸入大量高炉渣导致死料柱重力增大,为保证死料柱浮起较高高度应适当增加死铁层深度。在高炉冶炼过程,适宜条件下,炉缸炉底内衬热面能够凝结渣铁壳。为延长高炉炉缸寿命,应制定合理的出铁维护制度和保证入炉焦炭质量,改善死料柱中心透液性,降低炉缸侧壁铁水流速,并严格控制入炉K和Zn负荷,避免炭砖脆化层的形成,促进炭砖热面渣铁壳的形成,隔离与炙热铁水的直接接触,延长高炉炉缸寿命。
刘璐[5](2019)在《包钢4150m3高炉风口曲损的分析研究与治理》文中研究说明高炉炼铁是钢铁生产的重要环节,风口是保证高炉正常生产的关键设备,位于高炉炉缸上方,由于风口所处环境十分恶劣,导致风口极易破损。包钢两座4150m3高炉自开炉6个月后就开始出现风口曲损的问题,最严重的时候,38个风口仅有20个风口可以喷煤。风口曲损后严重影响高炉的稳定顺行,制约了高炉进一步强化冶炼。同时,休风更换风口带来的直接产量损失和间接经济损失都非常大。因此,找出导致风口曲损的原因,制定解决措施刻不容缓。本文从异常炉况、装料制度、气流分布、入炉碱负荷、炉前出铁等方面进行研究,剖析原因,通过优化装料制度、维护合理炉型、探索适宜的送风制度、控制有害元素负荷、优化风口参数、加强炉前出铁管理方面制定了合理的解决措施,逐步消除了风口曲损现象,延长了风口使用寿命,实现高炉稳定顺行。在风口曲损与炉况顺行关系的研究中,发现悬料、崩料等异常炉况容易使炉料直接进入炉缸,其重力作用到风口上导致风口曲损,因此保持炉况稳定顺行是高炉风口曲损大幅减少的基础。摸索到了重要参数的合理控制范围:中心气流指数Z值范围8-12、边缘气流指数W值范围0.8-1.2;理论燃烧温度Tf值在2150℃-2300℃;鼓风动能范围850011000kg·m·s-1;热负荷范围(9000-10500)×10MJ·h-1、理论燃烧温度范围(2150±100)℃。在风口曲损与装料制度关系的研究中,通过对炉料的批重,布料方式的探索,制订了合理的布料矩阵,采用了疏松边缘气流、稳定中心气流的制度,异常炉况大幅减少,操作炉型逐渐趋于合理。在风口曲损与炉渣碱度关系的研究中,分析了提高自产矿入炉比例后,对炉内整体透气透液性及风口曲损情况的影响,提出了优化配料结构,降低有害元素含量高的矿种的配比,适当降低炉渣碱度至1.08左右等措施,从而减轻入炉有害元素对炉况造成的影响。在风口曲损与出铁管理关系的研究中,认为确保铁口深度在合理范围内(3.7m4.2m),可以为良好的炉前作业创造条件。
何友国[6](2019)在《唐钢2000m3高炉铜冷却壁应用研究》文中提出本课题分析总结了高炉应用铜冷却壁后,在炉役前期由于铜冷却壁本身优良的挂渣能力,在高炉原燃料冶金性能变差、入炉粉率增加,高炉操作等因素作用下,造成高炉炉墙形成以铜冷却壁所挂渣皮为基础从下至上的结厚,高炉操作炉型受破坏;同时也分析总结了高炉炉役后期,因铜冷却壁因自身物理化学性质和高炉操作,导致铜冷却壁破损失效的因素。为了保证使用铜冷却壁高炉在炉役前期冶炼的正常运行,一是在判定和处理铜冷却壁结厚方面,唐钢2#高炉在学习借鉴国内高炉处理结厚经验的基础上,通过研究实践总结了一套技术。在判定炉墙结厚的35天内,高炉进行短时间休风45小时,在休风前分组集中插焦,加硅石,先烧掉铜冷却壁所挂渣皮,休风后对结厚方向的冷却壁冷却水改汽化,送风后送水,适当开放边缘气流,形成对结厚体的急冷急热冲击,有利于结厚体的脱落,以达到处理结厚的目的。二是在预防铜冷却壁结厚方面,唐钢2号高炉提出了全流程预防高炉结厚的理念。为了保证使用铜冷却壁高炉在炉役后期的安全运行,唐钢2000m3级高炉总结了铜冷却壁的破损原因、破损铜冷却壁漏水判定。在判定铜冷却壁破损漏水后,利用休风机会,加装铜冷却柱、勾管、冷却水管改工业水开路冷却等措施,来维持高炉的安全运行,从而达到延长一代炉龄,为高炉大修准备争取时间,减小高炉经济损失。图25幅;表21个;参56篇。
王得刚,全强,段国建,孟凯彪,陈秀娟,索延帅[7](2019)在《长寿高炉炉体冷却结构探讨》文中研究说明本文介绍了几种常见的高炉冷却结构,通过应用实例分析了铸铁铸钢冷却壁、铜冷却壁、板壁结合冷却结构等几种国内外常见高炉冷却装置普遍存在的问题,介绍了爆炸焊接铜钢复合冷却壁、组合式冷却壁、微型冷却器等几种新型冷却结构,分析了铜冷却壁、微型冷却器、组合式冷却壁的工作情况,对几种常见冷却结构的性能进行了对比,探讨了长寿高炉合理的炉体冷却结构,分析了保证高炉长寿的炉体冷却结构必须具备的条件。
成子浩[8](2019)在《高炉炉缸侵蚀状况的数值模拟》文中进行了进一步梳理炉缸是高炉寿命的限制性环节,炉缸侵蚀程度直接决定高炉的一代寿命。高炉炉缸内高温铁水与炉缸内衬直接接触,在炉缸外侧冷却水的强制冷却下形成了很大的温度差,产生的热应力破坏炉缸耐火砖原有的物理属性。同时冶炼过程中发生的物理、化学等反应,也会侵蚀炉缸的耐火砖。因此,选取某高炉建立高炉炉缸侵蚀模型,对其侵蚀程度进行研究计算,研究结果如下:1)根据某高炉生产现场提取的数据,对高炉炉缸传热方式以及侵蚀状况进行了分析:炉缸传热的主要方式为热传导传热,其侵蚀状况沿轴中心线呈轴对称分布。2)基于传热学原理、大平板理论以及长圆筒理论对高炉炉缸侵蚀状况进行了理论计算,结果表明:某高炉炉缸炉底已经遭受侵蚀,炉底侵蚀部分为第一层刚玉莫来石砖,侵蚀严重部位处在炉底中心处;炉缸侧壁陶瓷杯部分完全被侵蚀掉,侵蚀严重部位处在炉缸侧壁第二段冷却壁范围。3)基于有限元法理论对高炉炉缸侵蚀状况进行了数值模拟,结果表明:高炉炉缸内的铁水温度在冷却水的冷却作用下,由于每段冷却壁的冷却强度不同,使得温度传递速度不同;高炉炉缸内衬的耐火材料不同,其本身属性不同,导致温度传递速度不同;炉缸侧壁碳砖残余厚度最小值为1080mm,炉底碳砖残余厚度最小值为2035mm。图29幅;表18个;参84篇。
葛灵杰[9](2018)在《马钢2#高炉冷却壁破损调查研究》文中研究表明马钢2#2500m3高炉于2017年5月进行大修,一代炉役寿命13年7个月。高炉大修的原因主要为铁口附近冷却壁水温差突破警戒线以及炉体中部冷却壁大量破损。本文对6-9段炉腹至炉身下部铜冷却壁及10-13段炉身中下部球墨铸铁冷却壁进行了破损调查,查明了冷却壁破损的主要原因,提出了合理措施。对停炉后的冷却壁整体摄像拍照,记录破损情况。对拆解的6-13段每块冷却壁壁体及水管破损情况进行拍照,并对热面磨损量、弯曲变形量进行测量。对9段22#铜冷却壁和11段37#铸铁冷却壁进行解剖调查研究,记录壁体裂纹情况、水管结垢情况;对壁体冷、热面试样进行金相显微分析;加工壁体芯样并对芯样进行力学性能分析;收集水垢进行XRD物质分析以及XRF化学成分分析;对铸铁冷却壁热面至冷面不同位置的铁屑料进行ICP成分分析。本文结论:(1)6-9段铜冷却壁共有27块出现烧损,第9段烧毁26块,第8段烧损1块。水通道破损59条。第6-9段铜冷却壁平均形变量分别为8.87mm、7.2mm、16mm、51.57mm,最大形变量76mm;平均热面磨损量分别为1.4mm、7.72mm、9.46mm、14.16mm,最大热面磨损量20mm。铜冷却壁的破损主要集中在第9段。10-13段铸铁冷却壁A类破损63块,第13段A类破损最多,达23块。第10-13段的平均热面磨损量分别为127.25mm、122.35mm、125.28mm、136.12mm。第13段冷却壁破损情况相对严重。(2)高炉温度波动、冷却壁水通道结垢、边缘煤气流的发展、壁体制造缺陷是导致冷却壁破损的主要原因。为此采用稳定炉况、采用软水密闭循环系统,调节边缘煤气流等措施可有效抑制冷却壁的损坏进程。(3)9段22#铜冷却壁水通道结垢厚度0.4mm-0.75mm,结垢成分由CaO·P2O5、ZnO·P2O5、FeO(OH)、CaCO3、MgCO3、Cu2SiS2等组成。水管与铜套内、外部焊缝出现开裂现象,导致冷却壁漏水。水通道水垢厚度为0.5mm-1.0mm时,冷却壁综合传热系数减小61.93%-76.24%。一代炉役后铜冷却壁壁体抗拉强度为218.45N/mm2,延伸率为30.00%,断面收缩率为44.44%。性能达到服役要求。(4)11段37#铸铁冷却壁表面耐火砖已脱落,冷却壁最大残存厚度为180mm。热面有4条非常明显的纵裂纹。冷却壁上部有两处严重的铸造缺陷A和B,缺陷A长125mm,宽40mm,高30mm,缺陷B长度超过130mm,最宽处达80mm,高40mm。水冷管与本体缝隙宽度为0.05mm-0.1mm。铸铁冷却壁无缝钢管内水垢为褐色,由Fe3O4、CaO·P2O5、Fe2P2O7、ZnCO3等组成,热面水管水垢厚度为1.3mm-2.0mm。壁隙与水垢使铸铁冷却壁综合传热系数降低38%-49%。铣削料越靠近热面,C、Si含量越低;但K、Na、Zn等元素越靠近热面含量越高。靠近冷面处的试样主要为铁素体和片状珠光体分布,热面铁素体与渗碳体分布较少,珠光体分布较多,且热面珠光体球化现象明显。冷却壁基体力学性能下降,试样拉伸强度在292.85MPa-307.87MPa,低于球墨铸铁最低要求(450MPa);拉伸率为0%,低于最低规定值(10%)。
李峰光,张建良,左海滨,王喆,祁成林[10](2015)在《高炉小模块非金属冷却壁设计参数》文中研究表明小模块冷却壁是将性能优异的耐火材料直接浇铸在平行排列的冷却水管上而形成的一种新型冷却设备。采用ANSYS软件建立了小模块冷却壁温度场计算模型,利用该模型计算了炉气温度为1 2001 600℃、冷却水流速为0.52.5m/s条件下壁体材质导热系数、水管材质、水管直径、水管间距、冷却水流速及工作环境温度等条件变化时小模块冷却壁的温度分布状况。结果表明,小模块冷却壁对炉气温度变化的适应能力较强,壁体材质导热系数、水管间距、壁体厚度对小模块冷却壁传热性能影响较大,而水管直径、水管材质及水流速的影响较小。
二、采用铜质冷却壁、延长高炉寿命(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、采用铜质冷却壁、延长高炉寿命(论文提纲范文)
(1)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)
摘要 |
Abstract |
引言 |
第1章 文献综述 |
1.1 现代高炉长寿概况 |
1.2 高炉长寿设计研究进展 |
1.2.1 炉缸结构 |
1.2.2 炉底死铁层 |
1.3 高炉炉衬与冷却壁选材研究进展 |
1.3.1 耐火材料 |
1.3.2 冷却壁 |
1.4 高炉损毁机理研究进展 |
1.4.1 炉缸炉底损毁机理 |
1.4.2 炉体冷却壁损毁机理 |
1.5 高炉传热机理研究进展 |
1.5.1 高炉炉缸炉底传热 |
1.5.2 高炉炉体冷却壁传热 |
1.6 本论文的提出和研究内容 |
1.6.1 论文提出 |
1.6.2 研究内容 |
第2章 高炉损毁机理研究方法 |
2.1 高炉破损调查 |
2.1.1 破损调查内容 |
2.1.2 破损调查方法 |
2.2 实验研究方法 |
2.2.1 炭砖表征 |
2.2.2 冷却壁表征 |
2.2.3 渣皮表征 |
2.3 高炉炉衬与冷却壁传热性能研究 |
2.3.1 传热模型建立 |
2.3.2 模型验证 |
第3章 武钢高炉炉缸炉底损毁机理研究 |
3.1 高炉炉缸炉底损毁特征分析 |
3.1.1 武钢4 号高炉破损调查(第3 代) |
3.1.2 武钢5 号高炉破损调查(第1 代) |
3.2 炉缸炉底损毁机理研究 |
3.2.1 炉缸环缝侵蚀 |
3.2.2 炉缸炉底象脚区域损毁 |
3.3 高炉钛矿护炉研究 |
3.3.1 Ti(C,N)形成热力学分析 |
3.3.2 破损调查取样与表征 |
3.3.3 武钢高炉钛矿护炉效果分析 |
3.4 本章小结 |
第4章 武钢高炉冷却壁损毁机理研究 |
4.1 高炉冷却壁损毁特征分析 |
4.1.1 武钢5 号高炉破损调查(第1 代) |
4.1.2 武钢1 号高炉破损调查(第3 代) |
4.1.3 武钢7 号高炉破损调查(第1 代) |
4.1.4 武钢6 号高炉破损调查(第1 代) |
4.2 球墨铸铁冷却壁损毁机理研究 |
4.2.1 力学性能分析 |
4.2.2 显微结构分析 |
4.2.3 损毁机理分析 |
4.3 铜冷却壁损毁机理研究 |
4.3.1 力学性能分析 |
4.3.2 理化指标分析 |
4.3.3 显微结构分析 |
4.3.4 损毁机理分析 |
4.4 本章小结 |
第5章 武钢高炉炉缸内衬设计优化研究 |
5.1 高炉炉缸全生命周期温度场分析 |
5.1.1 烘炉阶段炉缸温度场 |
5.1.2 炉役初期炉缸温度场 |
5.1.3 炉役全周期炉缸温度场 |
5.1.4 炉役自保护期炉衬厚度 |
5.2 炉缸传热体系结构优化研究 |
5.2.1 炉缸炭砖传热体系优化 |
5.2.2 炉缸冷却结构优化 |
5.3 高炉炉缸长寿化设计与操作 |
5.3.1 炉缸结构设计和选型 |
5.3.2 高炉炉缸长寿操作技术 |
5.4 本章小结 |
第6章 武钢高炉冷却壁长寿优化研究 |
6.1 高炉冷却壁渣皮特性及行为研究 |
6.1.1 渣皮物相组成及微观结构研究 |
6.1.2 渣皮流动性分析 |
6.1.3 渣皮导热性能及挂渣能力分析 |
6.2 高炉冷却壁渣皮行为监测研究 |
6.2.1 渣皮厚度及热流强度计算 |
6.2.2 铜冷却壁渣皮监测系统研究 |
6.3 高炉冷却壁长寿技术对策研究 |
6.3.1 高炉冷却壁长寿设计优化 |
6.3.2 高炉冷却壁操作优化 |
6.3.3 高炉冷却壁渣皮厚度管控技术 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 展望 |
本论文主要创新点 |
致谢 |
参考文献 |
附录1 攻读博士学位期间取得的科研成果 |
附录2 攻读博士学位期间参加的科研项目 |
(4)长寿高炉炉缸炉底影响因素研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 世界炼铁工业概述 |
2.1.1 古代和炼铁的起源及世界钢铁中心 |
2.1.2 高炉巨型化发展概况 |
2.1.3 高炉长寿发展概况 |
2.2 高炉炉缸侧壁高温点和烧穿位置 |
2.3 炉缸炉底侵蚀原因 |
2.3.1 铁水环流 |
2.3.2 死铁层深度 |
2.3.3 砌筑结构 |
2.3.4 碱金属和锌侵蚀 |
2.3.5 炭砖脆化层 |
2.4 高炉炉缸死料柱 |
2.4.1 死料柱作用和更新周期 |
2.4.2 死料柱焦炭微观形貌及成分研究 |
2.4.3 死料柱焦炭粒度分布研究 |
2.4.4 死料柱空隙度分布研究 |
2.5 高炉炉缸炭砖保护层研究 |
2.5.1 富铁层 |
2.5.2 富高炉渣层 |
2.5.3 富石墨碳层 |
2.5.4 富钛层 |
2.6 炭砖抗渣铁和碱金属侵蚀性能检测方法 |
2.7 研究意义 |
2.8 研究内容和研究方法 |
3 炉缸死料柱焦炭研究 |
3.1 炉缸焦炭取样过程和分析方法介绍 |
3.2 死料柱焦炭结构和成分研究 |
3.2.1 BF A入炉焦炭成分和微观结构研究 |
3.2.2 BF A死料柱焦炭成分和微观结构研究 |
3.2.3 BF B死料柱焦炭成分和微观结构研究 |
3.2.4 BF A死料柱焦炭石墨化研究 |
3.2.5 死料柱无机矿物质含量变化研究 |
3.2.6 死料柱焦炭石墨化和无机矿物质转变对高炉影响研究 |
3.3 死料柱焦炭粒径分布研究 |
3.3.1 BF A死料柱焦炭粒度分布研究 |
3.3.2 BF B死料柱焦炭粒度分布研究 |
3.3.3 BF A死料柱焦炭强度研究 |
3.4 死料柱空隙度分布研究 |
3.5 本章小结 |
4 高炉铁口日常维护制度下炉缸铁水流场模拟 |
4.1 物理模型和数学模型 |
4.1.1 数学模型的简化 |
4.1.2 物理模型 |
4.1.3 数学模型和边界条件 |
4.1.4 网格的划分 |
4.2 铁口深度对炉缸铁水流动的影响 |
4.2.1 死料柱沉坐 |
4.2.2 死料柱浮起 |
4.2.3 生产实践实例分析 |
4.3 泥包大小对炉缸铁水流动的影响 |
4.3.1 死料柱沉坐 |
4.3.2 死料柱浮起 |
4.4 铁口倾角对炉缸铁水流动的影响 |
4.4.1 死料柱沉坐 |
4.4.2 死料柱浮起 |
4.5 双铁口夹角对炉缸铁水流动的影响 |
4.5.1 死料柱沉坐 |
4.5.2 死料柱浮起 |
4.6 模型验证 |
4.7 本章小结 |
5 高炉特定炉缸状态下的铁水流场模拟 |
5.1 死料柱浮起高度对炉缸铁水流动的影响 |
5.2 死料柱中心透液性对炉缸铁水流动的影响 |
5.2.1 死料柱沉坐 |
5.2.2 死料柱浮起 |
5.3 炉底温度降低对炉缸铁水流动的影响 |
5.3.1 死料柱沉坐 |
5.3.2 死料柱浮起 |
5.4 本章小结 |
6 炉缸炭砖脆化层和保护层研究 |
6.1 炉缸残余炭砖和保护层取样位置介绍 |
6.2 炉缸炉底炭砖剩余厚度调研 |
6.3 炉缸炭砖结构及成分和理化性能研究 |
6.3.1 原始SGL炭砖微观形貌 |
6.3.2 用后第9层SGL炭砖热面微观形貌 |
6.3.3 用后第11层SGL炭砖热面微观形貌 |
6.3.4 用后第12层SGL炭砖热面微观形貌 |
6.3.5 用后第9层SGL炭砖理化性能分析 |
6.4 炉缸炭砖脆化层形成机理研究 |
6.5 炉缸炭砖保护层成分及微观结构研究 |
6.5.1 用后第3层武彭炭砖热面保护层微观形貌 |
6.5.2 用后第4层SGL炭砖热面保护层微观形貌 |
6.5.3 用后第9层SGL炭砖热面保护层微观形貌 |
6.5.4 炉底陶瓷垫热面微观形貌 |
6.6 炉缸炭砖保护层形成机理研究 |
6.7 本章小结 |
7 炭砖抗渣铁和碱金属及锌侵蚀设备的开发 |
7.1 实验设备介绍 |
7.2 实验步骤 |
7.3 抗铁水侵蚀实验结果 |
7.4 抗高炉渣侵蚀实验结果 |
7.5 抗碱金属和锌侵蚀实验结果 |
7.6 炭砖内部温度变化 |
7.7 本章小结 |
8 结论与工作展望 |
8.1 结论 |
8.2 创新点 |
8.3 工作展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(5)包钢4150m3高炉风口曲损的分析研究与治理(论文提纲范文)
摘要 |
Abstract |
1 文献综述 |
1.1 引言 |
1.2 国内外高炉风口的发展情况 |
1.2.1 国内发展情况 |
1.2.2 国外发展状况 |
1.3 影响风口使用寿命的原因 |
1.3.1 风口破损机理 |
1.3.2 客观因素 |
1.3.3 高炉操作 |
1.4 提高风口使用寿命的举措 |
1.4.1 优化风口结构 |
1.4.2 改善冷却水条件 |
1.4.3 提高风口材质和制造质量 |
1.4.4 对风口表面进行强化处理 |
1.4.5 提高操作水平 |
1.4.6 提高喷吹煤粉装置的合理性 |
1.5 选题目的和意义 |
2 包钢两座4150m~3 高炉风口曲损原因分析 |
2.1 基本情况 |
2.1.1 风口结构 |
2.1.2 风口材质 |
2.1.3 曲损情况 |
2.1.4 风口曲损的危害 |
2.1.5 风口曲损的判断方法 |
2.2 风口曲损与异常炉况的关系 |
2.3 风口曲损与装料制度的关系 |
2.3.1 布料矩阵 |
2.3.2 矿焦比(O/C) |
2.4 风口曲损与气流的关系 |
2.4.1 风口曲损与初始气流分布的关系 |
2.4.2 风口曲损与热负荷的关系 |
2.5 风口曲损与碱金属的关系 |
2.5.1 风口曲损与碱负荷的关系 |
2.5.2 风口曲损与锌负荷的关系 |
2.6 风口曲损与出铁及风口尺寸的关系 |
2.6.1 风口曲损与风口尺寸的关系 |
2.6.2 风口曲损与出铁管理的关系 |
2.7 本章小结 |
3 高炉风口曲损的解决措施 |
3.1 优化装料制度,稳定中心气流 |
3.2 维持合理送风制度 |
3.2.1 维持合理的鼓风动能,活跃炉缸 |
3.2.2 送风比的控制 |
3.3 维护合理的操作炉型 |
3.3.1 制定合理的炉体热负荷控制范围 |
3.3.2 热负荷的控制 |
3.4 控制入炉有害元素负荷 |
3.4.1 减少碱金属入炉量 |
3.4.2 降低炉渣碱度 |
3.5 保持炉况稳定顺行 |
3.5.1 炉况顺行的特征 |
3.5.2 保持炉况顺行的重要参数范围 |
3.6 优化风口参数,强化出铁管理 |
3.6.1 优化风口参数 |
3.6.2 加强炉前出铁管理 |
3.7 本章小结 |
结论 |
参考文献 |
在学研究成果 |
致谢 |
(6)唐钢2000m3高炉铜冷却壁应用研究(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 文献综述 |
1.1 研究高炉应用铜冷却壁的背景及意义 |
1.2 高炉冷却设备介绍 |
1.2.1 高炉冷却壁分类 |
1.2.2 铜冷却壁和铸铁冷却壁的对比 |
1.3 国内外高炉铜冷却壁应用情况 |
1.3.1 国外高炉铜冷却壁应用情况 |
1.3.2 国内高炉铜冷却壁应用情况 |
1.4 本章小结 |
1.5 本课题研究目标及研究内容 |
第2章 唐钢2000m~3高炉本体冷却设备概况 |
2.1 冷却系统设计流程及参数 |
2.1.1 冷却系统概况 |
2.1.2 冷却系统技术参数 |
2.2 唐钢2000m~3高炉冷却系统监控和管理制度 |
2.2.1 工艺技术控制标准 |
2.2.2 工艺技术控制措施 |
第3章 唐钢2~#高炉炉役前期铜冷却壁应用研究 |
3.1 铜冷却壁对高炉操作炉型的影响 |
3.1.1 铜冷却壁对高炉操作炉型影响机理 |
3.1.2 铜冷却壁对高炉操作炉型影响的矛盾性 |
3.1.3 唐钢2~#高炉铜冷却壁对高炉操作炉型影响现状 |
3.2 使用铜冷却壁后唐钢高炉炉墙结厚的征兆 |
3.2.1 炉墙温度低 |
3.2.2 料尺有尺差 |
3.2.3 十字测温边缘低 |
3.2.4 炉顶成像边缘出现亮光 |
3.2.5 炉缸工作不均 |
3.3 唐钢2~#高炉炉墙结厚的原因分析 |
3.3.1 高炉大修扩容后炉型不合理 |
3.3.2 原燃料 |
3.3.3 操作因素导致高炉结厚 |
3.4 处理唐钢2~#高炉铜冷却壁结厚方法及实践 |
3.4.1 高炉结厚处理的一般原则 |
3.4.2 唐钢2~#高炉处理结厚实践 |
3.5 预防唐钢2~#铜冷却壁结厚的措施 |
3.5.1 实施全流程原燃料整粒工作 |
3.5.2 高炉制定原燃料管理措施 |
3.5.3 实施烧结系统入机料碱金属和锌元素管控工作 |
3.5.4 稳态烧结工艺技术的实施稳定烧结矿冶金性能 |
3.5.5 高炉操作制度的合理管控 |
3.5.6 建立高炉结厚预警模型 |
3.6 应对铜冷却壁结厚效果 |
3.7 本章小结 |
第4章 唐钢1~#高炉炉役后期铜冷却壁应用研究 |
4.1 概述 |
4.2 铜冷却壁破损原因分析 |
4.2.1 铜冷却壁化学侵蚀 |
4.2.2 铜冷却壁应力的破损作用 |
4.2.3 铜冷却壁磨损 |
4.2.4 操作制度的影响 |
4.3 铜冷却壁在唐钢1~#高炉炉役末期破损征兆及应对措施 |
4.3.1 冷却壁破损征兆 |
4.3.2 冷却壁破损应对措施 |
4.3.3 铜冷却壁破损期高炉操作制度调整和管理措施 |
4.4 实施效果 |
4.5 本章小结 |
结论 |
参考文献 |
致谢 |
导师简介 |
企业导师简介 |
作者简介 |
学位论文数据集 |
(8)高炉炉缸侵蚀状况的数值模拟(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 文献综述 |
1.1 国内外高炉炉龄简述 |
1.1.1 国外大型高炉炉龄 |
1.1.2 国内大型高炉炉龄 |
1.2 高炉长寿限制性环节 |
1.3 炉缸监测模型建立的意义 |
1.4 高炉炉缸侵蚀模型研究现状及发展趋势 |
1.4.1 高炉炉缸侵蚀模型的国外研究现状 |
1.4.2 高炉炉缸侵蚀模型的国内研究现状 |
1.4.3 高炉炉缸侵蚀模型的发展趋势 |
1.5 研究目标及研究内容 |
第2章 高炉炉缸侵蚀界线计算的基本理论及炉缸破损机理 |
2.1 传热学基本理论 |
2.1.1 热阻 |
2.1.2 导热系数 |
2.1.3 傅里叶定律 |
2.1.4 热量传输的基本方式 |
2.1.5 能量守恒 |
2.1.6 导热微分方程 |
2.2 软件简介 |
2.2.1 FLUENT简述 |
2.2.2 FLUENT求解算法及求解流程 |
2.3 高炉炉缸破损机理 |
2.4 实验方案 |
2.4.1 高炉炉缸炉底传热方式分析 |
2.4.2 高炉炉底中心按大平板传热考虑 |
2.4.3 高炉炉缸侧壁按长圆筒传热考虑 |
2.4.4 建立模型 |
第3章 高炉炉缸侵蚀界线的理论计算 |
3.1 数据提取及整理 |
3.2 高炉炉底中心按大平板传热考虑 |
3.3 高炉炉缸侧壁按长圆筒传热考虑 |
3.4 小结 |
第4章 高炉炉缸侵蚀数学模型及数值模拟 |
4.1 高炉炉缸侵蚀数学模型的建立 |
4.1.1 有限元法原理 |
4.1.2 条件假设 |
4.1.3 数学模型的建立 |
4.1.4 求解 |
4.2 高炉炉缸侵蚀的数值模拟 |
4.2.1 高炉炉缸几何模型的前处理 |
4.2.2 输出模型并导入FLUENT软件 |
4.3 模拟结果后处理及结果分析 |
4.3.1 高炉炉缸炉底温度场分析 |
4.3.2 冷却壁冷却作用对炉缸内衬残余厚度最小值的要求 |
4.3.3 高炉炉缸炉底侵蚀程度分析 |
4.3.4 理论计算结果与模拟结果的比较分析 |
4.4 小结 |
结论 |
参考文献 |
致谢 |
导师简介 |
企业导师简介 |
作者简介 |
学位论文数据集 |
(9)马钢2#高炉冷却壁破损调查研究(论文提纲范文)
摘要 |
abstract |
第一章 文献综述 |
1.1 高炉长寿发展概述 |
1.1.1 延长高炉寿命的意义 |
1.1.2 高炉寿命的限制性因素 |
1.2 高炉冷却壁特性 |
1.2.1 铸铁冷却壁 |
1.2.2 铸钢冷却壁 |
1.2.3 铜冷却壁 |
1.3 冷却壁的破损类型及机理 |
1.3.1 铸铁冷却壁破损类型 |
1.3.2 铸铁冷却壁破损机理 |
1.3.3 铜冷却壁破损类型 |
1.3.4 铜冷却壁破损机理 |
1.4 论文的提出 |
第二章 马钢2~#高炉冷却壁破损调查 |
2.1 马钢2~#高炉冷却壁调查背景 |
2.1.1 高炉主要技术指标 |
2.1.2 冷却壁分布情况 |
2.1.3 冷却壁损坏情况总览 |
2.2 调查方案 |
2.2.1 调查内容 |
2.2.2 铜冷却壁破损程度定义与测量方法 |
2.2.3 铸铁冷却壁破损程度定义与测量方法 |
2.3 冷却壁破损调查 |
2.3.1 第6段铜冷却壁破损状况 |
2.3.2 第7段铜冷却壁破损状况 |
2.3.3 第8段铜冷却壁破损状况 |
2.3.4 第9段铜冷却壁破损状况 |
2.3.5 第10段铸铁冷却壁破损状况 |
2.3.6 第11段铸铁冷却壁破损状况 |
2.3.7 第12段铸铁冷却壁破损状况 |
2.3.8 第13段铸铁冷却壁破损状况 |
2.3.9 冷却壁总体破损状况小结 |
2.4 冷却壁破损原因 |
2.4.1 铜冷却壁破损原因 |
2.4.2 铸铁冷却壁破损原因 |
2.5 冷却壁破损的改进措施 |
2.6 小结 |
第三章 铜冷却壁与铸铁冷却壁解剖研究 |
3.1 第9段22~#铜冷却壁解剖调查 |
3.1.1 铜冷却壁解剖方法 |
3.1.2 铜冷却壁的解剖结果与破损原因分析 |
3.1.3 水垢对铜冷却壁传热影响 |
3.1.4 铜冷却壁的解剖调查小结 |
3.2 第11段37~#铸铁冷却壁解剖调查 |
3.2.1 铸铁冷却壁解剖研究方法 |
3.2.2 铸铁冷却壁的解剖结果与破损原因分析 |
3.2.3 水垢对铸铁冷却壁传热影响 |
3.2.4 铸铁冷却壁的解剖调查小结 |
3.3 小结 |
第四章 结论 |
参考文献 |
致谢 |
(10)高炉小模块非金属冷却壁设计参数(论文提纲范文)
1小模块冷却壁传热计算模型的建立及模拟方案 |
1.1物理模型 |
1.2数学模型及边界条件 |
1.3模拟方案 |
2炉气温度及冷却水速对小模块冷却壁传热性能影响分析 |
2.1炉气温度变化对小模块冷却壁传热性能的影响 |
2.2冷却水速对小模块冷却壁传热性能的影响 |
3小模块冷却壁材质选择及设计结构对其传热性能的影响 |
3.1壁体材质的影响 |
3.2水管材质的影响 |
3.3水管直径的影响 |
3.4水管间距的影响 |
3.5壁体厚度的影响 |
4各因素对小模块冷却壁影响程度分析 |
5结论 |
四、采用铜质冷却壁、延长高炉寿命(论文参考文献)
- [1]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
- [2]宝钢高炉铜冷却壁运行维护探析[J]. 刘仕虎,华建明. 炼铁, 2020(03)
- [3]高炉炉体合理冷却结构探析[J]. 王得刚,全强,祁四清,陈秀娟,索延帅. 炼铁, 2020(02)
- [4]长寿高炉炉缸炉底影响因素研究[D]. 牛群. 北京科技大学, 2020(06)
- [5]包钢4150m3高炉风口曲损的分析研究与治理[D]. 刘璐. 内蒙古科技大学, 2019(03)
- [6]唐钢2000m3高炉铜冷却壁应用研究[D]. 何友国. 华北理工大学, 2019(04)
- [7]长寿高炉炉体冷却结构探讨[A]. 王得刚,全强,段国建,孟凯彪,陈秀娟,索延帅. 2019年全国炼铁设备及设计年会论文集, 2019
- [8]高炉炉缸侵蚀状况的数值模拟[D]. 成子浩. 华北理工大学, 2019(01)
- [9]马钢2#高炉冷却壁破损调查研究[D]. 葛灵杰. 安徽工业大学, 2018(01)
- [10]高炉小模块非金属冷却壁设计参数[J]. 李峰光,张建良,左海滨,王喆,祁成林. 中国冶金, 2015(09)