一、保护地番茄几种生理性病害的发生与防治(论文文献综述)
程鸿燕[1](2021)在《1,3-二氯丙烯熏蒸后土壤活化对土壤微生物群落结构及番茄生长的影响》文中研究说明番茄是我国主要的经济作物,中国大部分的番茄是在塑料大棚或温室等保护性农业下生产,这增加了土壤病原体及土传病害的传播。土传病害是植物生长最重要的限制因素之一,在同一块土地上连续种植高经济价值作物,如番茄、草莓、黄瓜、生姜和三七等,会导致如镰刀菌、致病疫霉菌和根结线虫等土传病害病原物积累,从而土壤的营养结构甚至微生态平衡遭到破坏,这可能会降低作物产量,甚至导致作物绝收。虽然土壤熏蒸剂是防治土传病害最直接、快速和有效的方法之一,但其通常会影响非目标土壤微生物。生防菌剂或有机肥被报道有利于土壤生态环境,本文将其定义为“土壤活化物质”。熏蒸后添加如生防菌剂或有机肥料等物质,有望重塑健康土壤微生物群落。同时,利用生防菌剂或有机肥料对熏蒸后土壤进行生物活化促进对土传病害的防治。土壤熏蒸剂1,3-二氯丙烯(1,3-D)因其对病原线虫和杂草的有效治理而得到广泛应用。本实验采用1,3-D熏蒸番茄土壤,熏蒸后添加枯草芽孢杆菌剂料(Bacillus Subtilis)和哈茨木霉菌剂料(Trichoderma Harzianum)(单独或联合使用)或腐植酸有机肥;分别从室内和田间两个方面监测了土壤理化性质、土壤酶活性、番茄生长和产量及土壤微生物群落组成和多样性的变化。主要结论如下:(1)室内熏蒸后施肥活化处理促进了土壤p H值和电导率的升高;熏蒸后土壤中的脲酶、蔗糖酶和过氧化氢酶活性均有不同程度的提高;同时在盆栽和田间试验也发现类似的结果。田间试验结果发现,由于熏蒸处理的抑制硝化作用,熏蒸处理降低了硝态氮的浓度,但施肥活化后硝态氮浓度升高了14.3%-151%,土壤的p H值显着提高1.20%至4.40%;结果表明施肥活化可有效解除或缓解熏蒸剂的抑制作用。实验结果发现,土壤细菌和真菌的丰度受土壤理化性质及其酶活性的影响,但不同类型的细菌或真菌对土壤理化性质及酶活性的影响存在差异。(2)田间结果表明,土壤熏蒸生物活化处理显着降低了镰刀菌属(防效为15.9%-94.3%)和疫霉菌属(防效为3.10%-88.7%)的种群密度。熏蒸后施用生防菌剂能够进一步抑制土传病害病原物。土壤细菌和真菌群落结构发生显着变化,同时,我们发现土壤细菌和真菌多样性和有益微生物(如鞘氨醇单胞菌属(Sphingomonas)、芽孢杆菌属(Bacillus)、被孢霉属(Mortierella)和木霉属(Trichoderma))的相对丰度在熏蒸生物活化后短时间内显着升高,且均与土壤病原菌抑制呈显着正相关,这增强了土壤或植物对镰刀菌和疫霉菌的抑制能力。室内熏蒸后活化处理刺激了土壤放线菌门(Actinobacteria)的生长(27.2%),增加了生防菌鞘氨醇单胞菌属(Sphingomonas)、假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)和溶杆菌属(Lysobacter)的相对丰度。当枯草芽孢杆菌剂料和哈茨木霉菌剂料混合使用时,这些有益细菌的相对丰度显着增加。这些结果表明,熏蒸后施肥活化可以在短时间内增加土壤中有益微生物的种群数量。(3)盆栽实验发现1,3-D熏蒸后施用生防菌剂促进了番茄的生长。熏蒸后添加生防菌剂活化在不同程度上增加番茄株高(14.7%-18.8%)、茎粗和鲜重(20.6%-38.8%)。同时田间实验也得到一致的结果,熏蒸施肥活化显着提高了番茄产量(7.50%-24.5%)。综合以上,土传病原菌的减少是由于土壤熏蒸和生防菌剂结合直接作用的结果,或通过优化土壤微生物群落结构,改善土壤的非生物因子(如土壤p H、肥力结构等),增强土壤的生态功能,从而诱导植物系统抗性,促进番茄生长和提高番茄产量。
裴广鹏[2](2021)在《生物质炭介导的番茄枯萎病防治效果及机理研究》文中认为番茄枯萎病是由致病菌尖孢镰刀菌番茄专化型(Fusarium oxysporum f.sp.lycopersici Snyder and Hansen)引起的一种常见的、危害最大的番茄土传病害。随着具有高度集约化、种植种类单一和复种指数高等特点的设施农业种植的广泛推广,番茄枯萎病的发生和蔓延已严重制约了番茄的产量及可持续发展,并造成了巨大的经济损失。防治土传病害的关键在于将土壤中病原菌数量控制在对作物安全的范围内。土传病原菌生活在土壤中或其生命中的某一阶段生活在土壤中,其大量生长繁殖与土壤性质退化、化感物质富集及微生物群落多样性降低等密切相关。然而,现有的番茄枯萎病防治方法主要是从植物保护和致病菌灭活的角度进行防治,而从改善土壤生态环境、构建健康土壤的角度开展番茄枯萎病等土传病害防治机理的研究则相对较少。因此,本研究以番茄枯萎病为研究对象,利用生物质炭在改善土壤环境的潜在优势,从土壤性质、酶活性和微生物群落结构等方面探究生物质炭介导下的番茄枯萎病防治效果及可能机理。主要研究结果如下:(1)明确了生物质炭对土壤尖孢镰刀菌的抑制作用。研究发现,在生物处理组(土壤未灭菌,接种尖孢镰刀菌)和非生物处理组(土壤灭菌后,接种尖孢镰刀菌)中,施加生物质炭和腐植酸钾均可显着降低土壤尖孢镰刀菌数量。随生物质炭施加量的增加,土壤尖孢镰刀菌数量呈现先降低后不变的趋势。随腐植酸钾施加量的增加,土壤尖孢镰刀菌数量呈现出先降低后升高的趋势。生物质炭和腐植酸钾配施对土壤尖孢镰刀菌数量的影响趋势同单独施加腐植酸钾的影响基本一致,表明生物质炭对尖孢镰刀菌的生长具有抑制作用,而高施加量的腐植酸钾(>1%)对尖孢镰刀菌生长具有促进作用。相关分析表明,土壤尖孢镰刀菌数量与土壤理化性质及酶活性密切相关。综合考虑发现生物质炭抑制尖孢镰刀菌和改善土壤生态环境的效果要优于腐植酸钾。(2)揭示了生物质炭对尖孢镰刀菌分泌的细胞壁降解酶和毒性代谢物的吸附固定作用。吸附实验表明,生物质炭和活性炭对果胶酶的吸附量大于纤维素酶,且活性炭的吸附量大于生物质炭。进一步分析可知吸附在生物质炭和活性炭上的果胶酶和纤维素酶几乎全部被固定,且固定在生物质炭和活性炭的果胶酶失活率分别达到56.99%和55.09%,而固定在生物质炭和活性炭的纤维素酶的失活率分别达到98.12%和96.11%。经生物质炭吸附处理后的细胞壁降解酶和毒性代谢物溶液,对番茄幼苗的毒害作用明显降低,表现为病害症状严重程度的降低和番茄干重的增加。(3)阐明了不同热解温度制备的生物质炭及其组分(碳骨架和灰分)对番茄枯萎病的抑制作用。结果表明,在温度为300℃和700℃下热解制备的生物质炭(B300和B700)施加到土壤中可明显降低番茄枯萎病的病害级别。生物质炭组分碳骨架ex B300和ex B700处理也可降低番茄的发病级别,但效果要低于生物质炭B300和B700处理。在生物质炭灰分Ash300和Ash700处理下,番茄发病情况与对照相近,病害程度无减轻现象。生物质炭B300和B700及其碳骨架ex B300和ex B700对土壤中尖孢镰刀菌数量表现出显着的抑制作用,其处理后尖孢镰刀菌数量较对照分别降低了33.87、38.17、27.85和50.77%,但灰分处理下尖孢镰刀菌数量较对照无显着差异。土壤微生物群落多样性分析表明,生物质炭及其组分均有促进土壤细菌多样性和抑制真菌多样性的潜在能力。(4)探明了尖孢镰刀菌胁迫下,生物质炭对番茄非根际土壤、根际土壤、根表和根内微生物的影响。研究发现,土壤细菌和真菌Alpha多样性(Sobs指数和PD指数)从非根际土壤、根际土壤、根表到根内呈现逐渐降低的趋势,且施加生物质炭可明显缓解尖孢镰刀菌胁迫造成的Alpha多样性变化。通过微生物群落结构分析可知,细菌主要优势菌群包括变形菌门、Actinobacteriota、厚壁菌门、绿弯菌门、Gemmatimonadota、Bacteroidota、Myxococcota、Acidobacteriota、Nitrospirota和Verrucomicrobiota。真菌主要优势菌群包括子囊菌门、担子菌门、Mortierellomycota和油壶菌门、球囊菌门。通过组间差异检验分析可知,根系各区域细菌和真菌主要门的丰度存在显着差异,尖孢镰刀菌胁迫对于根系不同区域的微生物也具有不同的影响,而生物质炭的施加可显着缓解尖孢镰刀菌胁迫造成的影响。(5)揭示了生物质炭诱导番茄抗性应对尖孢镰刀菌胁迫的作用机理。研究发现,尖孢镰刀菌胁迫下,番茄叶片光合色素和丙二醛含量明显增加,生物质炭的施加可显着降低尖孢镰刀菌胁迫造成的丙二醛含量变化。施加生物质炭在降低番茄体内过氧化物酶活性的同时,可提高“解毒酶”的活性(包括过氧化氢酶、超氧化物歧化酶、谷胱甘肽还原酶和谷胱甘肽S-转移酶)。在尖孢镰刀菌胁迫下,番茄体内氧化型谷胱甘肽含量明显升高,生物质炭(3%)的施加在显着降低氧化型谷胱甘肽含量的同时,显着提高了还原性谷胱甘肽含量含量,表明生物质炭可通过提高抗氧化分子含量来加强番茄体内活性氧的清除效率。此外,施加生物质炭可增强番茄系统防御尖孢镰刀菌入侵的启动效应和能力,主要依赖于茉莉酸和乙烯的通路介导。具体表现为在生物质炭的作用下,番茄水杨酸相关基因PR1a、MPK2和NPR1的表达下调,而茉莉酸相关基因PDEF1、JAZ1、JAZ3和乙烯相关基因ACO1和ACS的表达上调。该结果表明施加生物质炭可增强番茄系统防御尖孢镰刀菌入侵的启动效应和能力。综上,本文通过研究生物质炭介导对番茄枯萎病的防治效果及机理,揭示了生物质炭通过影响土壤理化性质、酶活性、根系微生物群落结构等土壤生态环境来抑制尖孢镰刀菌生长,并吸附尖孢镰刀菌产生的细胞壁降解酶和毒性代谢物阻碍其对番茄根系的入侵,最后诱导并提高番茄系统抗性应对尖孢镰刀菌入侵带来的胁迫。研究结果为生物质炭在土传病害防治方面的应用提供了新的理论依据和技术支持。
李凤硕[3](2021)在《两株生防细菌的复合菌剂对番茄灰霉病防效的研究》文中提出
刘常利[4](2021)在《柑橘黑点病生防菌筛选、鉴定和制剂开发》文中研究指明柑橘黑点病,也称砂皮病,是一种重要的柑橘真菌性病害,严重影响柑橘的品质,给果农造成重大经济损失。黑点病的致病菌为柑橘间座壳菌(Diaporthe citri),以田间枯枝病残体上产生的分生孢子为主要侵染源;果园生产过程中产生的大量枯枝既是可成为黑点病致病菌的繁殖基质材料,也是难以处置的重要、物污染废物。寻找既可以杀灭枯枝中滋生的黑点病病原真菌又可以加快枯枝降解的生防菌,在此基础上研发出制剂和田间处理技术,这对于生产实践具有重要的科学意义和实际应用价值。本文筛选到同时具有拮抗柑橘黑点病菌和加快枯枝降解的生防真菌3株,将其制备成可湿性粉剂制剂,并进行了室内和大田生防效果验证;构建了测定D.citri的实时荧光定量PCR技术体系,对利用生防菌处理枯枝过程中黑点病菌的数量进行动态监测。具体研究结果如下:1.获得3株既具抑制黑点致病菌又具降解枯枝能力的生防菌。通过与致病菌的对峙培养试验、枯枝降解试验在柑橘园枯枝中分离筛选到兼具D.citri抑制作用和枯枝降解作用的生防真菌三株。通过形态学和分子生物学方法将3株菌株鉴定为2个种,其中一株为棘孢木霉(Trichoderma asperellum),菌株编号WLP31;另外两株为Trichoderma asperelloides种,菌株编号WLA94、WL123。对三株生防真菌对黑点病菌的抑制效果、枯枝降解效果、作物安全性、菌株生长速度、产孢速度和漆酶产酶量等指标进行了量化。2.分别制备出三株生防木霉菌株的可湿性粉剂。制剂的配方如下:有效成分为分生孢子,含量5%;载体为硅藻土,含量87%;润湿剂选择十二烷基苯磺酸钠,含量3%;分散剂为木质素磺酸钠,含量5%,紫外保护剂为荧光素钠,含量为5 mg/kg。产品最终质量参数如下:孢子含量5.8*108个/g,润湿时间17 s,悬浮率92%,水分含量2.7%,p H值7.6,25℃储藏120 d后孢子萌发率为93.25%3.构建出针对D.citri的快速定量检测体系。在D.citri的翻译延长因子(TEF1-α)序列中筛选到特异性引物一对,具体信息如下:正向引物WL-F:5’-CACTGCACCTCAAATCATCAGCCT-3’,反向引物WL-R:5’-GGTGGTGACAAGGAT-3’;优化了从枯枝中提取黑点病菌DNA的方法和QPCR检测条件,其检测灵敏度:0.013 pg/μL,比PCR条件下监测灵敏度高出1000倍。4.对三种生防菌制剂进行了室内和大田效果验证,发现三种生防制剂均可满足枯枝降解和病原菌杀灭要求。效果评价结论如下:1)室内枯枝降解实验:三种生防制剂均可以高效降解枯枝,处理30 d、90 d和120 d后,相对于空白对照,田间枯枝粉碎物的干物质分别降低10%、25%和25%-35%;2)室内病原菌抑制实验:三种生防制剂分别对田间枯枝粉碎物处理7d,均可将每克枯枝中初始含有的超3*104拷贝数的致病菌处理至低于QPCR体系检出阈值;3)大田枯枝降解实验:发酵培养60 d,WLA94、WL123、WLP31三种生防制剂的加入使田间枯枝粉碎物干物质重量降低的比例相对于空白对照分别增加了14.89%,13.48%和10.83%;4)大田柑橘果面黑点病防治试验证明三种生防菌制剂的喷施对于黑点病在果面的发生具有预防作用,且相对防效和生防菌使用浓度呈正相关。
任怡璇[5](2021)在《党参灰霉病拮抗细菌的筛选及对党参促生作用的研究》文中指出党参(Codonopsis pilosula(Franch.)Nannf)是常用的药用植物,具有很高的药用价值,在我国多个省份均有大面积种植。近年来,人工种植党参的面积不断增加,但由于管理方法与制度不规范等因素,党参受到多种病原菌的侵害,病害日益严重,对种植产业化产生了非常不利的影响。党参灰霉病(Septoria codonopsidis Ziling.)是由葡萄孢属(Botrytis)真菌引起的真菌性病害,严重制约了党参种植产业的发展。目前党参灰霉病的防治主要依靠化学杀菌剂和一些简单的农业措施,但是,随着化学药品的长期大量使用,不但使灰霉病病原菌对很多化学药品产生了不同程度的抗性,而且对环境造成了严重污染,进而危害了人畜健康。因此,开发具有安全、绿色等特点的生物防控剂对党参灰霉病防治具有重要意义。本研究通过对甘肃省党参主栽区安定区、岷县和渭源县党参灰霉病发病情况的调查,探究了品种、产地、龄期和耕作制度等对党参灰霉病发病的影响,分析了病原菌种类,并从党参根际土壤和组织中筛选了对党参灰霉病病原菌有较强抑制作用又具有促生活性的细菌菌株,经发酵条件优化后测定了菌株的防治和促生效果。主要研究结果如下:(1)党参品种、产地、龄期和耕作制度均会影响灰霉病发病程度,其中,渭党1号对灰霉病病原菌的抗性最好;岷县灰霉病发病程度最轻;龄期越大,党参灰霉病发病程度越严重;轮作有益于减轻灰霉病的发生程度。分子生物学鉴定进一步证明党参灰霉病的病原菌为灰葡萄孢(Botrytis cinerea)。(2)利用稀释涂布法和组织匀浆法从3个地区的党参根际土壤和根、茎、叶中共分离纯化到61株细菌菌株。以灰葡萄孢(B.cinerea)为靶标,采用平板对峙法初筛到对党参灰霉病病原菌具有较强拮抗作用(抑制率>50%)的细菌15株,进一步利用菌丝生长速率法对这15株细菌进行复筛,其中6株细菌(抑制率>50%)的无菌发酵滤液对灰霉病病原菌菌丝有抑制作用,可使菌丝畸形,其中抑制率最高的为NSW3-1,可达86.88%,其次是菌株GJW2-1,抑制率为85.76%。(3)促生活性测定发现,6株细菌均具有产IAA、铁载体和纤维素酶的能力,但菌株GJW2-1产IAA和铁载体活性最强。结合抑菌和促生活性的大小,枯草芽孢杆菌NSW3-1(Bacillus subtilis)和萎缩芽孢杆菌GJW2-1(Bacillus atrophaeus)可作为进一步筛选党参灰霉病绿色防控剂的候选菌株。(4)通过响应面法对2株拮抗促生细菌进行发酵条件优化后得到了枯草芽孢杆菌NSW3-1和萎缩芽孢杆菌GJW2-1的最佳发酵条件,分别为:接种量1.2%,装液量50 m L/100 m L,培养温度30℃,时间36 h,此时的活菌数最高,为282×106cfu/m L。接种量1.3%,装液量50 m L/100 m L,培养温度30℃,时间36 h,此时的活菌数最高,为358.2×106 cfu/m L。(5)室内预防和治疗盆栽试验表明,枯草芽孢杆菌NSW3-1的低浓度和高浓度活菌发酵液在党参灰霉病预防和治疗试验中,防治效果均优于萎缩芽孢杆菌GJW2-1。当2株菌活菌发酵液浓度为1?106 cfu/m L时,治疗效果优于预防效果,而高浓度活菌发酵液1?107 cfu/m L和1?108 cfu/m L的预防效果优于治疗效果。(6)室内促生盆栽试验表明,2株菌对党参均具有促生作用,使用灌根的方法将1?108 cfu/m L的活菌发酵液用于盆栽时的促生效果更好。细菌NSW3-1的活菌发酵液对党参株高和根长的促生作用更强,而GJW2-1的活菌发酵液则可以明显增加党参的鲜、干重,因此,GJW2-1对党参的促生作用强于NSW3-1。综上,室内防效盆栽试验和促生盆栽试验为2株细菌在田间的施用奠定了基础。
张晓梦[6](2021)在《复合生防菌对洋葱根腐病害的防治与机理研究》文中进行了进一步梳理洋葱茎基腐病也叫洋葱根腐病,是由镰刀菌引起的一种土传病害,在洋葱生长的各个阶段和贮藏期间都会发病,严重影响了洋葱产量。为选择绿色有效的方法防治洋葱病害,本研究以洋葱层出镰刀菌为防治对象,分离筛选出对层出镰刀菌有较强拮抗作用的解淀粉芽孢杆菌和棘孢木霉;通过研究两菌株的最佳发酵条件,利用其代谢产物进行离体试验、盆栽试验等,进一步确定了两菌株及其复合菌对洋葱层出镰刀菌的防治效果,并对两菌株在洋葱根际的定殖和对洋葱的促生及抗性诱导进行了初步探索,为复合生防菌在田间施用提供理论依据。主要研究结果如下:1.从甘肃省嘉峪关洋葱种植基地采集的发病洋葱鳞茎上分离出致病菌层出镰刀菌(Fusarium proliferatum),以层出镰刀菌为防治对象,从土壤中筛选出了细菌XG和真菌M2,且两菌株具有兼容性,对层出镰刀菌的抑制率分别为65%和84.6%;两菌株发酵混合滤液对其孢子萌发的抑制率为96.15%;采用平板定性试验检测发现菌株XG和M2均含有蛋白酶、纤维素酶、几丁质酶、嗜铁素、葡聚糖酶、IAA等多种次级代谢产物,并具有溶磷和降低p H的性能;通过形态学和分子生物学鉴定两株拮抗菌分别为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)和棘孢木霉(Trichoderma asperellum)。2.分别以菌株XG和M2的生物量及对层出镰刀菌的抑菌率为指标,选择菌株XG和M2的发酵最适培养基,采用响应面分析和单因素试验相结合的方法,优化菌株发酵培养基的添加量和发酵条件。结果表明:菌株XG和M2的最适发酵培养基均为YMC培养基,即酵母粉2%,蔗糖2%,玉米蛋白粉2%;菌株XG最佳发酵条件为培养基初始p H6.5、发酵温度32℃、转速180 r/min、接种量5%,发酵时间72 h;菌株M2最佳发酵条件为培养基初始p H7.0、发酵温度26℃、转速180 r/min、接种量3%,发酵时间为7 d。经过培养基及发酵条件优化后,在离体试验中发现先喷施复合菌XG+M2的滤液再接种层出镰刀病菌对洋葱根腐病的防治效果最佳,达72.5%。3.利用基因工程技术构建了带有GFP标记的菌株XG,得到菌株XG-p GFP,带有RFP标记的菌株M2,得到菌株M2-RFP,分别通过生长曲线法和生物量法检测发现野生型菌XG和转化子XG-p GFP的生长速率基本一致;野生型菌M2和转化子M2-RFP的产孢量和抑菌效果无明显差异;将标记菌株XG-p GFP和M2-RFP接种洋葱植株根际后,发现两菌株均可以定殖在洋葱根系。4.通过种子发芽试验研究了菌株XG、M2和复合菌XG+M2对洋葱种子生长的影响,发现复合菌XG+M2稀释100倍的发酵滤液,对洋葱种子的促进作用最强,根长、茎长、鲜重、干重分别增加了103.73%、166.14%、57.21%、67.22%;盆栽试验表明,复合菌XG+M2对洋葱根腐病有较好的防治作用,能够促进洋葱植株生长;酶活测定表明复合菌株处理后洋葱植株根活力、叶绿素含量及POD、PPO、PAL的酶活力均有明显的提高;利用荧光定量法检测了与洋葱植株相关的蛋白基因,经复合菌XG+M2处理洋葱植株后,除Ac LOX1蛋白基因的表达量显着下调外,Ac PR1、Ac PAL1、Ac EIN3蛋白基因的表达量均显着上调。
高竞[7](2021)在《山核桃根腐病土壤微生物群落特征研究以及抑病生物有机肥料研发》文中研究说明山核桃(Carya cathayensis)过度经营导致土壤生态恶化,山核桃根腐病日趋严重,根腐病的致病菌主要是镰刀菌属(Fusarium)真菌,感染后导致树叶枯萎、凋落、根部坏死,严重时整株死亡,对农户造成重大的经济损失。为了探明发病土壤的微生物群落特征,采集4个病害等级的山核桃林根区土壤,分别是健康(JK)、等级一(B1)、等级二(B2)、等级三(B3),同时采集3种不同施肥方式(SF1、SF2、SF3)的健康林根区土壤,分析土壤理化性质、微生物酶活性(7种)、细菌和真菌以及尖孢镰刀菌与禾谷镰刀菌病原菌丰度,通过高通量测序分析土壤细菌与真菌的群落结构和α多样性。为研发根腐病的生物防治肥料,通过平板对峙及土壤混合培养,明确解淀粉芽孢杆菌(Bacillusamyloliquefacienssubsp.Plantarum)、棘孢木霉(Trichoderma asperellum)、草酸青霉(Penicilliumoxalicum)抑制效果后,将其加入到商品有机肥料中堆制成生物有机肥料,并进行山核桃室外盆栽肥料试验、以观察其促生和抑病效果。主要研究结果如下:1)比较不同病害等级山核桃林根区土壤结果表明:健康土壤(JK)的各项指标的平均值均高于发病土壤,而且随着发病程度的提高呈总体下降趋势,养分及p H越低的土壤发病越严重。土壤微生物酶活性中蛋白酶(AG)、纤维二糖水解酶(CB)β-葡萄糖苷酶(BG)与N-乙酰-β氨基葡萄糖苷酶(NAG)在健康土壤中活性最高,呈现病害症状越严重酶活性越低的趋势,而亮氨酸氨基肽酶(LAP)、磷酸酶(PHOS)、β木糖苷酶(XYL)则呈现先下降后又回复的波动趋势。细菌基因丰度整体呈下降趋势,真菌丰度最高仍然是健康土壤,表现为先降低后回升的趋势。土壤细菌多样性指数JK和B1高于(P<0.05)B2和B3,而真菌的B3显着低于(P<0.05)其他土壤。所有土壤细菌的三个菌群(变形菌门、酸杆菌门和放线菌门)的绝对优势规律一致,Rokubacteria和Latescibacteria是健康土壤的特征类群,而绿弯菌门则是发病严重土壤特征类群。发病土壤中索利氏菌目丰度升高,而根瘤菌目和粘球菌目降低。土壤JK和B3真菌门水平群落结构相似、B1和B2相似。尖孢镰刀菌随着发病程度增加上升,但禾谷镰刀菌丰度最高出现在B1土壤,显着高于其他三个处理(P<0.05)。土壤有机碳、速效磷、速效钾等指标与β-葡萄糖苷酶(BG)、N-乙酰-β氨基葡萄糖苷酶(NAG)以及细菌和真菌多样性密切正相关(P<0.05),细菌群落受环境影响较小,真菌群落受环境影响较大。2)比较不同施肥方式山核桃林地根区土壤结果表明:不同施肥方式山核桃林地土壤中养分存在差异,但总体来说养分充足,能够满足山核桃生长。不同施肥对七种酶活性以及细菌基因丰度影响较小,对真菌基因丰度影响大于细菌。施肥方式对细菌多样性影响较小,真菌多样性表现出SF3>SF2>SF1的结果(P<0.05),说明施肥及合理的人为管理一定程度上能提高山核桃林地土壤真菌多样性。施肥对土壤中细菌群落结构影响较小,主要菌群为变形菌、酸杆菌与放线菌门。施用肥料种类越多、子囊菌门的丰度越高,子囊菌门丰度的上升会导致担子菌门丰度下降。施肥对真菌生长影响较大但规律性较差,三个健康土壤中的中肉座菌目、粪壳菌目、被孢霉目的群落相对丰度没有显着性差异,结合前一章的结果,推测这三种真菌群落与健康存在一定关联。健康山核桃林地中的两种病原菌数量均较低,未达发病丰度。3)对生防菌进行效果研究、肥料研制及盆栽实验结果表明:解淀粉芽孢杆菌、棘孢木霉、草酸青霉三种生防菌均能够抑制尖孢镰刀菌与禾谷镰刀菌生长,但抑制机制存在差异。平板上对峙培养时棘孢木霉效果最好、草酸青霉次之、芽孢杆菌最差。三种生防菌均能在模拟病土中抑制病原菌的生长,但效果不够稳定。两种或三种菌种混合施用抑制效果比单一菌种差,表明这3种生防菌不适合同时混合施用。三种生防菌均能在生物有机肥中存活,并且放置6个月后能够达到国家微生物有机肥菌种数量标准。生物有机肥料的施用能促进山核桃生长,其中WK1肥料的效果最为显着;施用肥料提高土壤中的细菌与真菌丰度,对2种病源菌也有抑制效果。综上所述,土壤理化性质、酶活性下降,细菌和真菌丰度下降、病源菌丰度增加,细菌和真菌多样性下降等综合因素导致山核桃根腐病发生。补充养分、提高土壤p H、施用含生防菌的生物有机肥料等人为管理措施,可降低土壤中病原菌丰度、缓解山核桃根腐害,研制的生物有机肥料可用于山核桃根腐病的防治。
商寅[8](2020)在《朝阳市设施蔬菜主要病害安全防控技术研究及氟吡菌酰胺药效试验》文中认为近年来辽宁省朝阳市设施蔬菜产业日益发展壮大,日光温室规模和冬季蔬菜生产供应的扩大使其成为中国北方重要的设施农产品生产基地。但是设施蔬菜病虫害尤其土传病害的发生日趋加重,导致蔬菜质量和产量不断下降,严重影响种植户的收入和蔬菜产业的健康发展。本文通过对朝阳市设施蔬菜主要病害进行调查,对其安全防控技术进行详细的比较研究,并对新药氟吡菌酰胺防控根结线虫的防效和对番茄品质影响进行详细的调查,取得如下研究结果:1.辽宁省朝阳市设施蔬菜病虫害调查结果:以枯萎病、霜霉病、白粉病、灰霉病、根结线虫等病害发生最为普遍,造成的危害越来越严重,是朝阳市当地需重视防控的病害。害虫以蚜虫、斑潜蝇、白粉虱为主,是朝阳地区发生比较普遍的虫害。2.防控重要病害的两种农药药效试验结果:通过药效试验发现,1.5%苦参碱·蛇床子素可湿性粉剂对番茄灰霉病发病前期有一定保护作用,建议使用剂量50 g/667 m2,发病前使用,间隔7 d左右施药,连续3-4次;在黄瓜霜霉病发生初期施药,田间建议使用量77.5-120 g/667 m2;对黄瓜灰霉病发病前使用,建议使用量45-60 g/667 m2。98%棉隆微粒剂对根结线虫病和黄瓜枯萎病都有比较好的控制效果,并且试验过程没有出现药害。3.氟吡菌酰胺的药效试验及对番茄产量品质影响:通过氟吡菌酰胺防控番茄根结线虫的田间药效试验,并测定试验区的果实产量和番茄生长情况,试验发现,用药量0.02 m L/株处理显着提高番茄穗数和果实直径,有利于增产,0.04 m L/株处理果实数量显着高于对照;各药剂处理均可增加番茄一级果和三级果的果实重量;0.04 m L/株处理防治根结线虫的防效为59.04%-67.25%,高于对照药剂1.8%阿维菌素乳油。氟吡菌酰胺可以帮助农户提高产量和增加收入,且对非靶标生物无影响。
丛韫喆[9](2020)在《生防菌混合发酵液对植物土传病害防治、土壤性质微生物区系和采后果实品质的影响》文中进行了进一步梳理长期过量使用化肥、农药和连茬耕作,造成了土壤退化、板结,土壤肥力下降、生产力降低,土壤微生物区系发生改变,病原微生物增加,土传病害发病严重,从而导致恶性循环,最终使作物品质下降,农药残留增加,药害肥害严重,严重阻碍农业的可持续发展,威胁到国家粮食安全。目前,对土传病害的防治措施包括物理防治、化学防治和生物防治。物理防治包括换土、暴晒消毒等措施,因其工程量大,实际应用效果不理想;化学防治手段会导致病原菌抗药性增加,对土壤和水体造成污染;生物防治主要利用生防微生物进行防治,而现在单一生防菌防病谱狭窄,防治效果不稳定。利用多种生防微生物防治可在土壤中植入大量的有益微生物,可以竞争、抑制病原菌,减轻病原压力,诱导植物抗性,促进植物生长,从而达到防治土传病害的效果。黑根霉(Rhizopus nigricans)和拟康氏木霉(Trichodermapseudokoningii)是本实验室从土壤传播疾病严重地区的植物根际土壤中分离得到的具有生物防治活性的两种丝状真菌。本文以黑根霉和拟康氏木霉混合发酵液为基础,研究了混合发酵工艺,通过混合发酵化学成分的分析,发现该工艺增加了抗菌物质,增加了增加系统抗性的物质,增加了促进植物生长的物质,对土传病害防治效果显着,改良了土壤理化生性状和微生物区系,并且采前用该制剂处理农作物,还提高了采后储藏期果实品质。1.混合发酵液对植物土传病害的防治效果抑菌实验表明混合发酵液对多种植物土传病原菌具有抑制作用。混合发酵液对尖孢镰刀菌的抑制率达61.12%,孢子萌发实验与发酵液抑菌实验结果表明,混合发酵液抑菌率达到92.83%。确立了混合发酵工艺,最优组合为豆粕70 g/L,磷酸二氢钾0.4g/L,可溶性淀粉30 g/L。黑根霉与拟康氏木霉接种比例为1:1、1:4、1:9,接种量2%;混合发酵温度为28℃;发酵时间12 d;初始pH为6.5。黑根霉和拟康氏木霉混合比例为1:4的发酵液对链格孢的抑制效果最好,达到66.73%的水平,对灰葡萄孢的抑制效果达到84.87%的水平。田间实验中混合微生物制剂对黄瓜枯萎病和番茄灰霉病的相对防治效果达到85%以上,并且植物株高、各时期叶片数与茎粗均高于对照组。证明混合发酵液处理具有抗病促生的作用。SOD、POD、PAL等抗性相关酶活均有不同程度的提升。混合发酵比单独发酵产物变化明显,其中抗菌物质如酚类和芳香族化合物如水杨酸甲酯等含量显着增加,诱导植物抗性的寡糖类物质含量上升。这些实验结果初步表明了混合发酵液的抑菌促生机制。2.混合发酵液对土壤理化生性状和土壤微生物区系的影响土壤是农作物生长的基质,是支撑农作物生长的根本资源。土壤中存在大量的微生物,土壤-微生物-植物构成了一个微生态系统,与植物病害特别是土传病害密切相关。土壤是否健康是决定植物健康状况的重要因素之一,不健康的土壤生态极易导致植物土传病害的发生。经混合发酵液处理后,土壤理化性质差异明显。两年实验结果证明,土壤孔隙度、田间持水量、有机质含量、总氮、速效磷及速效钾显着升高,而土壤容重、pH值、铵态氮、硝态氮降低。土壤有机质、总氮、速效磷和速效钾的含量与混合发酵液施用量成正相关。处理后,土壤结构性变好,有机质含量增加,土壤熟化程度增加,养分含量增加。施用混合发酵液后,土壤脲酶、转化酶及过氧化氢酶的的活性都有较大的提高,促进了土壤微生物的繁殖和增强了相关酶的活性。施用混合发酵液后对土壤微生物的多样性产生了较为明显的提升。真菌方面,纲水平上的优势种群粪壳菌纲、银耳纲和散囊菌纲,处理后粪壳菌纲相对含量减少,而银耳纲和散囊菌纲相对含量增加。在属水平上,常见病原菌分布较多的赤霉菌属和镰刀 菌属在处理过后的土壤中相对含量下降明显。在种水平上,几种病原菌如立枯丝核菌、腐皮镰刀菌和尖孢镰刀菌的相对含量都有明显的减少。在细菌方面,在纲水平上酸杆菌纲相对含量减少,变形菌纲、放线菌纲和梭菌纲相对含量增加。科水平上黄色单胞菌科,产碱菌科相对含量增加显着。在种水平上,几种有益细菌如根瘤菌、慢生根瘤菌和硝化细菌的相对含量都有明显的增加。证明混合发酵液对于土壤内植物病原真菌的生长繁殖产生了抑制作用,调节土壤微生物区系,使其更利于植物生长。3.混合发酵液采前处理对猕猴桃果实采后品质和保鲜的影响果实的采后品质与植物的健康程度息息相关,只有健康作物才能够产出高品质的果实。对植物病害的防治最终目的就是让农产品的产量和品质得到提升。因此,对采后品质的研究能够反映农艺措施在实际生产应用中的有效性。混合发酵液处理后,猕猴桃溃疡病的相对防效达到68.11%;叶片光和效率提高11.58%,防御相关酶SOD、POD、PAL活性具有不同程度的显着提高。在采后猕猴桃实验中,与对照组相比,混合发酵液处理后单果重平均增加27.69%,果实硬度提高2.15倍,SSC提高34.40%,可滴定酸含量提升,乙烯产量和呼吸速率下降,相关防御酶活性提升。采后实验表明,处理组果实失水率显着下降,采后病害发病率显着降低,防病效果达到72.2%。猕猴桃果实转录组实验结果表明,在采后果实抗病性方面,与抗氧化抗逆,生长素的运输有关的类黄酮合成途径中相关酶的转录水平上调最为显着,生长素、细胞分裂素、赤霉素和水杨酸等植物激素信号转导相关基因的转录水平同样提升显着,多种抗病蛋白基因表达水平上调,有效提高了果实抗病能力。在果实抑制成熟方面,混合发酵液处理后生长素相关基因(AUX/IAA)上调表达及其显着;显着促进了果实中丙氨酸解氨酶(PAL)过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)基因的表达。同时抑制了贮藏后期猕猴桃果实中多聚半乳糖醛酸酶(PG)、果胶酯酶、β-葡萄糖苷酶、β-1,3-葡聚糖酶和多聚半乳糖醛酸酶等多个细胞壁水解酶基因的表达。果实成熟相关转录因子RIN4、CNR6表达量显着降低;乙烯合成相关途径中,两个最重要的限速酶ACS3和ACO表达量极显着下调,乙烯信号转导途径中的负调控因子CTR1、EIN3和EIN4表达量极显着上调。实验结果证明了混合发酵液采前处理可以通过抑制细胞壁降解过程和乙烯合成转导途径中的相关基因表达,从而达到延缓猕猴桃果实成熟的结果。代谢组学实验结果表明,采后果实植物激素含量发生改变,生长素、水杨酸含量上升,脱落酸含量下降,多种氨基酸、维生素和类黄酮物质含量上升。这些结果在基因水平证明混合发酵液促进了果实的发育,提升果实品质,延长果实保鲜期。综上所述,黑根霉和拟康氏木霉混合发酵液可以提升土壤理化生性状,改善土壤微生物区系,有效抑制植物病原微生物生长,从而达到防治土传病害的目的。对猕猴桃的采后实验表明,混合发酵液采前处理有效提高了采后果实品质,延长果实储藏时间。本研究提供了一种防治植物病害,抗逆增产的生物防治新思路,对国家农药化肥增效减施策略和可持续农业的发展具有重大意义。
刘连盟[10](2020)在《稻用生物与化学组合增效杀菌剂的研发和相关机制研究》文中研究说明水稻是我国最重要的粮食作物之一,以稻瘟病、水稻纹枯病和稻曲病为代表的各种病害每年都会给水稻生产造成巨大损失。化学防治是目前生产上最主要和最有效的水稻病害防控措施,但也存在环境污染、抗药性和残留等问题。随着人们环境意识的提高、对化学防治的重新认识和有机农业的发展,生物杀菌剂因其环境友好、安全和开发成本低的优点在水稻病害防控上表现出光明的前景。本研究评估了两株不同类型的生防潜力菌芽孢杆菌H158和链霉菌HSA312对水稻主要病害的生防效能,并解析了其生防机制。在生防菌和化学杀菌剂互补性的基础上,以生防菌和化学杀菌剂混用(菌-剂混用)增效为指导思想,筛选得到两个生防菌株与化学杀菌剂的三种增效组合,并对相关的增效机制进行了探讨。得到以下研究结果:1. 利用形态学、生理生化特征、细胞壁脂肪酸组成、16S r DNA及gyr B序列等信息将H158菌株鉴定为枯草芽孢杆菌(Bacillus subtilis)。H158对多种病原菌尤其是稻瘟病菌和稻曲病菌表现出强烈的拮抗效果,可达83.3%和75.6%,能在MSGG、PDA(B)和PSA(B)等多种培养基上形成稳定成熟的生物膜,并表现出一定的溶菌能力。H158可以调节水稻防御相关酶活和基因表达,通过诱导系统抗性(ISR)提高水稻对病害的抗性。H158的对峙培养可引起稻瘟病菌大量基因差异表达,尤其表现在脂类代谢等通路上。H158在田间对稻瘟病、水稻纹枯病和稻曲病等水稻主要病害都表现出明显的防治效果,防效在38.4-50.1%之间。H158与化学杀菌剂混用性能良好,增效作用最明显的是其与嘧菌酯混用对水稻纹枯病的防治和与戊唑醇混用对稻曲病防治,增效系数分别为1.9和0.36。H158发酵液处理水稻植株对稻米品质和加工性能无明显不利影响,在垩白度、蛋白含量和直链淀粉含量等性状上还有所提升。2. 在人工接种和自然发病条件下,嘧菌酯、吡唑醚菌酯和肟菌酯等三种甲氧基丙烯酸酯类杀菌剂(Qo I)与H158混用在水稻纹枯病防治上都表现出强烈的增效作用,以嘧菌酯+H158组合防效最好,最高达88.8%;肟菌酯+H158组合增效作用最强,增效系数最高达3.7。三种Qo I类杀菌剂对H158毒性很低,在低于200 mg L-1的浓度下还能促进其生长,其中嘧菌酯对H158的亲和作用最强。Qo I类杀菌剂对H158在植株定殖性能未见明显的抑制作用,肟菌酯表现出一定的促定殖作用。在培养前期(0-48h),肟菌酯可促进H158生物膜结构的生长和成熟;肟菌酯对H158引起的水稻ISR的影响不明显,其增效机制主要表现为促进H158生长、定殖和提高抗逆性。3. 戊唑醇+H158混用组合仅在戊唑醇64.5 g a.i.ha-1的低用量下才表现出增效作用,增效系数为2.5,而在更高用量水平下表现出拮抗作用。戊唑醇对H158具有一定的毒性,50 mg L-1的浓度即可抑制其生长,且能明显抑制H158生物膜的形成,在超过25 mg L-1的浓度下无法形成生物膜结构。该混用组合对水稻防御相关酶活和防御相关基因的表达都具有明显的诱导和调控作用,增强水稻ISR是两者混用的主要增效机制。4. 利用形态、生理生化特征、细胞壁脂肪酸组成分析和分子生物学等方法,将一株分离自西藏那曲地区的放线菌(HSA312),鉴定为阿洛杰链霉菌(Streptomyces araujoniae)。该菌株仅对稻曲病菌和稻瘟病菌表现出强烈的拮抗作用,抑制率在56.7-51.1%,对其他病原菌抑制效果不佳,抑制率在22%以下。HSA312具有一定的溶菌能力,表现出较强的紫外辐射抗性和植株定殖能力,可以调节水稻防御相关酶活和基因表达,通过ISR提高水稻对病害的抗性。转录组分析表明,HSA312可引起病原菌大量基因下调表达。田间试验结果表明,HSA312对稻瘟病防效较高,最高达52.2%,但对其他病害防效不明显。其发酵液对稻瘟病菌的菌丝生长、孢子萌发和附着胞形成的抑制作用强烈,其中附着胞最为敏感,浓度为107 cfu m L-1时已能完全抑制附着胞的形成。在人工接种和自然发病情况下,HSA312对稻瘟病尤其是叶瘟表现出优异的防效,防效最高达83.9%。HSA312与多种化学药剂的混用性能不佳,但与三环唑混用对叶瘟防治表现出一定的增效作用,增效系数为1.5。品质和加工性能的研究表明,HSA312发酵液处理后对稻米品质和稻谷加工性能无明显不利影响,在垩白度、粘性和精米率等一些性状上还有所提升。5. HSA312+三环唑组合对叶瘟的防治表现出一定增效作用,但不够稳定,而在穗颈瘟的防治上增效作用稳定,两年的增效系数分别为1.0和1.2。三环唑对HSA312孢子萌发和菌体生长都有一定的抑制作用,但抑制作用会随着时间的推移,逐渐减弱,6天后仅超过160 mg L-1的浓度才能对菌落大小造成影响。三环唑对HSA312对稻瘟病菌的抑菌能力没有明显影响,对峙下HSA312对稻瘟病菌菌丝转录组影响也比较有限。HSA312+三环唑组合对水稻防御相关酶活和防御相关基因的表达都具有明显的诱导和调控作用,预示水稻ISR是该组合的主要增效机制。本研究的完成不仅为基于H158和HSA312及其与化学杀菌剂增效组合的相关药剂研发奠定基础,也为生物杀菌剂和化学杀菌剂增效机制的研究提供参考。
二、保护地番茄几种生理性病害的发生与防治(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、保护地番茄几种生理性病害的发生与防治(论文提纲范文)
(1)1,3-二氯丙烯熏蒸后土壤活化对土壤微生物群落结构及番茄生长的影响(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 番茄土传病害危害现状 |
1.2 土传病害防治现状 |
1.2.1 土壤消毒技术 |
1.2.2 其他防治技术 |
1.3 生防菌剂 |
1.3.1 生防菌剂对熏蒸后土壤理化性质及土壤酶的影响 |
1.3.2 生防菌剂和土壤熏蒸剂对土壤微生物群落及功能基因的影响 |
1.4 土壤熏蒸结合生防菌剂防治土传病害的研究展望 |
1.5 论文研究内容、目的及意义 |
1.5.1 论文研究内容 |
1.5.2 论文研究目的及意义 |
第二章 1,3-二氯丙烯熏蒸土壤活化对土壤微环境的影响 |
2.1 实验材料 |
2.1.1 供试药剂 |
2.1.2 供试土壤 |
2.2 实验方法 |
2.2.1 室内熏蒸和熏后施肥活化实验设计 |
2.2.2 土壤理化性质和酶活性的测定 |
2.2.3 土壤总DNA提取和高通量测序 |
2.3 生物信息和数据分析 |
2.3.1 生物信息分析 |
2.3.2 数据分析 |
2.4 结果与讨论 |
2.4.1 熏蒸土壤活化对土壤理化性质的影响 |
2.4.2 熏蒸土壤活化对土壤酶活性的影响 |
2.4.3 熏蒸土壤活化对土壤细菌群落结构的影响 |
2.5 讨论 |
2.6 小结 |
第三章 1,3-二氯丙烯熏蒸土壤活化对盆栽番茄土壤肥力及植株生长的影响 |
3.1 材料与方法 |
3.1.1 实验材料及实验设计 |
3.1.2 土壤理化参数 |
3.1.3 土壤DNA提取及荧光定量PCR |
3.2 数据分析 |
3.3 结果 |
3.3.1 土壤肥力的变化 |
3.3.2 熏蒸活化对盆栽番茄土壤酶活力的影响 |
3.3.3 土壤总细菌、总真菌、枯草芽孢杆菌及木霉基因丰度变化 |
3.3.4 番茄植株生长指标变化 |
3.3.5 土壤环境因子与基因丰度相关性分析 |
3.3.6 番茄生长指标与基因丰度相关性分析 |
3.4 讨论 |
3.5 小结 |
第四章 1,3-二氯丙烯熏蒸土壤活化对田间病害防控及土壤微生物群落的影响 |
4.1 材料与方法 |
4.1.1 试验地及实验材料 |
4.1.2 实验设计及过程 |
4.1.3 土壤理化性质及酶活性测定 |
4.1.4 土壤病原菌检测 |
4.1.5 土壤DNA提取及高通量测序 |
4.2 生信分析与数据分析 |
4.3 结果与讨论 |
4.3.1 土传病害防控效果评价及番茄产量 |
4.3.2 土壤理化指标和酶活性的变化 |
4.3.3 土壤环境因子相关性 |
4.3.4 土壤熏蒸生物活化对土壤微生物多样性和群落结构的影响 |
4.3.5 土壤微生物群落层次聚类与主坐标分析 |
4.3.6 土壤细菌和真菌群落组成差异分析 |
4.3.7 土壤环境因子与微生物群落组成的关系 |
4.3.8 生物标志物与土壤病原物防治和番茄产量的相关性分析 |
4.4 讨论 |
4.5 小结 |
第五章 结论 |
5.1 研究结论 |
5.1.1 1,3-二氯丙烯熏蒸土壤活化对土壤微生物群落的影响 |
5.1.2 1,3-二氯丙烯熏蒸土壤活化对番茄生长及产量的影响 |
5.2 本研究创新点 |
5.3 本研究存在的问题及未来展望 |
5.3.1 存在的问题 |
5.3.2 未来展望 |
参考文献 |
致谢 |
作者简历 |
(2)生物质炭介导的番茄枯萎病防治效果及机理研究(论文提纲范文)
中文摘要 |
ABSTRACT |
第一章 文献综述 |
1.1 土传病害 |
1.1.1 土传病害概述 |
1.1.2 番茄枯萎病简介 |
1.1.3 番茄枯萎病防治方法 |
1.2 生物质炭对土壤微生物的影响 |
1.2.1 生物质炭简介 |
1.2.2 生物质炭对土壤微生物活性和群落结构的影响 |
1.3 生物质炭在作物土传病害防治中的应用 |
1.3.1 生物质炭对土传病害的防治效应 |
1.3.2 生物质炭防控土传病害的主要机理 |
1.4 研究目的和意义 |
1.5 研究内容和技术路线 |
1.5.1 主要研究内容 |
1.5.2 技术路线 |
1.6 创新点 |
第二章 生物质炭对番茄枯萎病菌的抑制作用研究 |
2.1 引言 |
2.2 材料与方法 |
2.2.1 供试材料 |
2.2.2 试验设计 |
2.2.3 测定指标与方法 |
2.2.4 数据统计分析 |
2.3 结果与分析 |
2.3.1 生物质炭对尖孢镰刀菌菌丝生长的影响 |
2.3.2 生物质炭对土壤尖孢镰刀菌、细菌和真菌数量的影响 |
2.3.3 生物质炭对土壤理化性质的影响 |
2.3.4 生物质炭对土壤酶活性的影响 |
2.3.5 土壤尖孢镰刀菌、细菌和真菌与土壤理化性质及酶活性的相互关系 |
2.4 小结 |
第三章 生物质炭对番茄枯萎病菌分泌细胞壁降解酶和毒性代谢物的吸附作用研究 |
3.1 引言 |
3.2 材料与方法 |
3.2.1 供试材料 |
3.2.2 材料性质分析 |
3.2.3 吸附动力学实验 |
3.2.4 吸附等温实验 |
3.2.5 固定化酶的解吸 |
3.2.6 固定化酶的活性 |
3.2.7 生物质炭对番茄发病程度的影响 |
3.2.8 数据统计分析 |
3.3 结果与分析 |
3.3.1 生物质炭和活性炭表征 |
3.3.2 酶的吸附动力学 |
3.3.3 酶的吸附等温线 |
3.3.4 固定化酶的解吸和活性 |
3.3.5 生物质炭吸附细胞壁降解酶和毒性代谢物对番茄幼苗病害严重程度的影响 |
3.4 小结 |
第四章 生物质炭不同组分对番茄枯萎病的抑病作用研究 |
4.1 引言 |
4.2 材料与方法 |
4.2.1 供试材料 |
4.2.2 生物质炭不同组分制备及其性质分析 |
4.2.3 盆栽试验 |
4.2.4 测定指标及方法 |
4.2.5 数据统计分析 |
4.3 结果与分析 |
4.3.1 生物质炭不同组分性质表征 |
4.3.2 生物质炭不同组分对番茄发病级别及生长性状的影响 |
4.3.3 生物质炭不同组分对土壤理化性质及酶活性的影响 |
4.3.4 生物质炭不同组分对土壤尖孢镰刀菌、细菌和真菌数量的影响 |
4.3.5 生物质炭不同组分对土壤微生物丰度和多样性的影响 |
4.4 小结 |
第五章 生物质炭介导根系微生物组抑制番茄枯萎病的作用研究 |
5.1 引言 |
5.2 材料与方法 |
5.2.1 供试材料 |
5.2.2 病原菌制备及接种 |
5.2.3 盆栽试验 |
5.2.4 土壤样品采集 |
5.2.5 高通量测序分析 |
5.2.6 数据统计分析 |
5.3 结果与分析 |
5.3.1 测序序列统计 |
5.3.2 根系微生物Alpha多样性分析 |
5.3.3 根系微生物群落结构分析 |
5.3.4 微生物群落聚类特征分析 |
5.4 小结 |
第六章 生物质炭介导下的番茄系统抗性对枯萎病的作用机理 |
6.1 引言 |
6.2 材料与方法 |
6.2.1 供试材料 |
6.2.2 病原菌制备及接种 |
6.2.3 盆栽试验 |
6.2.4 测试指标及方法 |
6.2.5 数据统计分析 |
6.3 结果与分析 |
6.3.1 生物质炭介导对尖孢镰刀菌胁迫下番茄光合色素含量的影响 |
6.3.2 生物质炭介导对尖孢镰刀菌胁迫下番茄丙二醛含量的影响 |
6.3.3 生物质炭介导对尖孢镰刀菌胁迫下番茄抗氧化酶活性的影响 |
6.3.4 生物质炭介导对尖孢镰刀菌胁迫下番茄非酶类抗氧化分子含量的影响 |
6.3.5 生物质炭介导对尖孢镰刀菌胁迫下番茄抗性相关基因表达的影响 |
6.4 小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
个人简况及联系方式 |
(4)柑橘黑点病生防菌筛选、鉴定和制剂开发(论文提纲范文)
致谢 |
摘要 |
Abstract |
第一章 文献综述 |
1.1 柑橘黑点病的发生与防治 |
1.1.1 柑橘黑点病研究现状 |
1.1.2 柑橘黑点病的检测与防治 |
1.2 DNA提取方法的研究历史和发展趋势 |
1.3 QPCR技术在植物病害检测上的应用 |
1.3.1 植物病害检测方法分类 |
1.3.2 QPCR检测在植物病害检测上的应用进展 |
1.4 木霉主要功能及其制剂应用 |
1.4.1 木霉主要功能 |
1.4.2 木霉的商品化制剂研究进展 |
1.5 本文的研究目的与内容 |
第二章 材料和方法 |
2.1 实验材料 |
2.1.1 柑橘园枯枝样本(用于分离生防菌) |
2.1.2 培养基 |
2.1.3 主要仪器 |
2.1.4 黑点病致病菌相关菌种 |
2.1.5 生防菌制剂所需试剂产品 |
2.2 实验方法 |
2.2.1 柑橘黑点病致病菌QPCR快速检测体系的建立 |
2.2.2 柑橘枯枝中寄生的黑点病致病菌D.citri的DNA提取方法的确立 |
2.2.3 枯枝所携带真菌的分离与鉴定 |
2.2.4 对黑点病菌具有生防作用的真菌筛选 |
2.2.5 生防菌制剂成分的筛选 |
2.2.6 生防菌制剂的效果评价 |
第三章 结果与分析 |
3.1 QPCR快速检测体系的建立 |
3.2 柑橘枯枝中寄生的黑点病致病菌DNA提取方法的确立 |
3.3 柑橘园枯枝携带真菌的分离和鉴定 |
3.4 对黑点病致病菌具有生防作用的真菌筛选 |
3.5 生防菌制剂成分的筛选 |
3.6 生防菌制剂效果评价 |
第四章 总结与展望 |
参考文献 |
(5)党参灰霉病拮抗细菌的筛选及对党参促生作用的研究(论文提纲范文)
摘要 |
abstract |
1 引言 |
1.1 灰霉病及其防治 |
1.1.1 农业防治 |
1.1.2 化学防治 |
1.1.3 生物防治 |
1.2 生防细菌抗病作用的研究进展 |
1.2.1 生防细菌的防治效果 |
1.2.2 生防细菌的抑菌机制 |
1.3 生防细菌促生作用的研究进展 |
1.3.1 生防细菌的促生效果 |
1.3.2 生防细菌的促生机理 |
1.4 党参灰霉病研究进展 |
1.5 研究的目的及意义 |
1.6 技术路线 |
2 不同因素对党参灰霉病发生的影响及病原菌的鉴定 |
2.1 引言 |
2.2 材料与方法 |
2.2.1 党参灰霉病田间发病调查 |
2.2.2 病原菌的分离与纯化 |
2.2.3 病原菌致病性测定 |
2.2.4 病原菌鉴定 |
2.2.5 数据统计与分析 |
2.3 结果与分析 |
2.3.1 党参灰霉病田间发病调查 |
2.3.2 病原菌分离及致病性测定 |
2.3.3 病原菌的形态鉴定 |
2.3.4 病原菌的分子鉴定 |
2.4 讨论与小结 |
2.4.1 讨论 |
2.4.2 小结 |
3 拮抗促生细菌的分离、筛选与鉴定 |
3.1 引言 |
3.2 材料与方法 |
3.2.1 供试样品 |
3.2.2 拮抗细菌的分离与纯化 |
3.2.3 拮抗细菌的筛选 |
3.2.4 拮抗细菌促生活性测定 |
3.2.5 拮抗促生细菌的鉴定 |
3.2.6 离体叶片防效测定 |
3.2.7 数据处理与分析 |
3.3 结果与分析 |
3.3.1 拮抗细菌的初筛 |
3.3.2 拮抗细菌的复筛 |
3.3.3 拮抗细菌对病原菌菌丝生长的影响 |
3.3.4 拮抗细菌的促生活性测定 |
3.3.5 拮抗促生细菌的鉴定 |
3.3.6 拮抗细菌对党参灰霉病的防效测定 |
3.4 讨论与小结 |
3.4.1 讨论 |
3.4.2 小结 |
4 生防细菌NSW3-1和GJW2-1 的发酵条件优化 |
4.1 引言 |
4.2 材料与方法 |
4.2.1 试验材料 |
4.2.2 方法 |
4.3 结果与分析 |
4.3.1 最佳基础发酵培养基的筛选 |
4.3.2 单因素试验 |
4.3.3 响应面结果分析 |
4.3.4 最优结果预测及试验验证 |
4.3.5 优化后的促生活性 |
4.3.6 优化后的拮抗活性 |
4.4 讨论与小结 |
4.4.1 讨论 |
4.4.2 小结 |
5 NSW3-1和GJW2-1 防治党参灰霉病及对党参的促生作用 |
5.1 引言 |
5.2 材料与方法 |
5.2.1 试验材料 |
5.2.2 试验方法 |
5.3 结果与分析 |
5.3.1 拮抗促生细菌室内盆栽防治效果 |
5.3.2 拮抗促生细菌室内盆栽促生效果 |
5.4 讨论与小结 |
5.4.1 讨论 |
5.4.2 小结 |
6 总结与展望 |
6.1 主要结论 |
6.2 问题与展望 |
6.2.1 问题分析 |
6.2.2 前景展望 |
参考文献 |
致谢 |
个人简历、在校期间发表的学术论文及研究成果 |
(6)复合生防菌对洋葱根腐病害的防治与机理研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 洋葱概述 |
1.2 洋葱病害的种类及综合防治现状 |
1.2.1 洋葱主要病害 |
1.2.2 洋葱主要病害的综合防治现状 |
1.3 洋葱根腐病的研究进展 |
1.3.1 洋葱根腐病的发病情况 |
1.3.2 洋葱根腐病病原菌的致病危害 |
1.4 生防菌的研究现状 |
1.4.1 生防细菌在植物病害中的应用及生防机制 |
1.4.2 木霉在植物病害中的应用及生防机制 |
1.4.3 复合生防菌在植物病害中的应用 |
1.4.4 生防菌的定殖 |
1.5 本研究的目的与意义 |
2 病原菌、生防菌的分离鉴定及复合菌的确定 |
2.1 材料 |
2.1.1 土样的采集 |
2.1.2 供试病原真菌 |
2.1.3 主要仪器 |
2.1.4 主要药品及试剂 |
2.1.5 培养基 |
2.2 方法 |
2.2.1 病原菌的分离鉴定 |
2.2.2 拮抗菌的筛选 |
2.2.3 菌株XG和M2 对洋葱层出镰刀菌孢子萌发的影响 |
2.2.4 菌株XG和M2 抑菌谱的测定 |
2.2.5 菌株XG和M2 理化性质的测定 |
2.2.6 菌种鉴定 |
2.3 结果与分析 |
2.3.1 病原菌的分离 |
2.3.2 病原菌的致病性检测 |
2.3.3 病原菌的形态鉴定 |
2.3.4 病原菌的分子鉴定 |
2.3.5 生防菌的分离 |
2.3.6 菌株XG和M2 对洋葱层出镰刀菌孢子萌发的影响 |
2.3.7 抑菌谱测定 |
2.3.8 菌株的理化性质测定 |
2.3.9 菌种鉴定 |
2.4 讨论与小结 |
3 培养基发酵条件的优化及对洋葱根腐病的防治效果 |
3.1 材料 |
3.1.1 供试菌株 |
3.1.2 供试植物 |
3.1.3 主要试剂 |
3.1.4 培养基 |
3.2 方法 |
3.2.1 培养基的选择 |
3.2.2 生物量的测定 |
3.2.3 抑菌活性测定 |
3.2.4 菌株XG生长曲线的测定及种子液的培养 |
3.2.5 菌株XG和M2 培养基添加量的响应面优化 |
3.2.6 菌株XG和M2 的发酵条件优化 |
3.2.7 菌株XG和M2 代谢产物对层出镰刀菌的抑菌效果 |
3.2.8 菌株XG和M2 对洋葱鳞茎的防治效果评价 |
3.3 结果与分析 |
3.3.1 培养基的确定 |
3.3.2 菌株XG和M2 发酵培养基的优化 |
3.3.3 菌株XG和M2 发酵滤液对洋葱层出镰刀菌的抑制效果 |
3.3.4 菌株XG和M2 对洋葱鳞茎防治效果的评价 |
3.4 小结与讨论 |
4 解淀粉芽孢杆菌XG和棘孢木霉M2 在洋葱植株根系的定殖 |
4.1 试验材料 |
4.1.1 供试菌株及质粒 |
4.1.2 供试抗生素 |
4.1.3 主要试剂 |
4.1.4 供试培养基 |
4.1.5 主要仪器 |
4.2 方法 |
4.2.1 农杆菌介导的菌株 M2 转化 |
4.2.2 菌株M2 转化子的生物学特性测定 |
4.2.3 菌株XG对抗生素的敏感性 |
4.2.4 pGFP质粒的提取 |
4.2.5 菌株XG的转化 |
4.2.6 野生型菌株 XG 和转化子 XG-pGFP 生长速率的测定 |
4.2.7 菌株XG—pGFP和 M2—RFP在洋葱植株根际的定殖动态测定 |
4.3 结果与分析 |
4.3.1 菌株M2 对潮霉素B的敏感性 |
4.3.2 抑制根癌农杆菌AGL-1 生长的头孢霉素浓度 |
4.3.3 菌株XG对抗生素的敏感性 |
4.3.4 pHB-RFP和 pGFP质粒的提取 |
4.3.5 转化子的荧光蛋白检测 |
4.3.6 野生型菌株 XG 和转化子 XG-pGFP 生长速率的测定 |
4.3.7 菌株M2 转化子的生物学特性 |
4.3.8 菌株XG—pGFP和 M2—RFP在洋葱植株根际的定殖动态 |
4.4 小结与讨论 |
5 复合菌对洋葱植株的促生诱导作用 |
5.1 材料 |
5.1.1 供试菌株 |
5.1.2 供试植物 |
5.1.3 主要试剂 |
5.1.4 供试培养基 |
5.1.5 主要仪器 |
5.2 方法 |
5.2.1 生防菌滤液对洋葱种子的影响 |
5.2.2 菌株对洋葱植株的影响 |
5.2.3 菌株对洋葱植株叶绿素含量的影响 |
5.2.4 菌株对洋葱植株根活力的影响 |
5.2.5 菌株对洋葱植株相关抗性酶活的影响 |
5.2.6 PR蛋白基因表达量的变化 |
5.3 结果与分析 |
5.3.1 生防菌滤液对洋葱种子的影响 |
5.3.2 菌株对洋葱植株生长的影响 |
5.3.3 菌株对洋葱植株叶绿素含量的影响 |
5.3.4 菌株对洋葱植株根活力的影响 |
5.3.5 菌株对洋葱植株抗性相关酶活的影响 |
5.3.6 洋葱根系蛋白基因表达量的变化 |
5.4 小结与讨论 |
6 结论与展望 |
致谢 |
参考文献 |
攻读学位期间的研究成果 |
(7)山核桃根腐病土壤微生物群落特征研究以及抑病生物有机肥料研发(论文提纲范文)
摘要 |
ABSTRACT |
1 文献综述 |
1.1 山核桃林地生态系统现状 |
1.2 土壤微生物群落与土传病害土传病 |
1.2.1 土壤微生物群落 |
1.2.2 土壤、植物、微生物群落、理化性质与酶活性的关系 |
1.2.3 土壤微生物群落对土传病害发生的影响 |
1.2.4 施肥与土壤及微生物群落的影响 |
1.3 山核桃病害的研究现状 |
1.3.1 根腐病的概述 |
1.3.2 根腐病的致病机理 |
1.3.3 根腐病的防治措施 |
1.3.3.1 化学农药 |
1.3.3.2 农艺措施 |
1.3.3.3 微生物防治 |
1.3.3.4 复合微生物肥料防治 |
1.4 生防菌的研究进展 |
1.4.1. 芽孢杆菌 |
1.4.2 青霉 |
1.4.3 木霉 |
1.5 论文研究目标、内容及技术路线 |
1.5.1 立题依据 |
1.5.2 研究内容 |
1.5.3 技术路线 |
2 山核桃不同等级病害土壤微生物群落及病原菌丰度差异 |
2.1 材料与方法 |
2.1.1 研究区概况 |
2.1.2 调查区山核桃林基本情况 |
2.1.3 土壤样品采集 |
2.1.4 土壤理化性质分析 |
2.1.5 土壤酶活性分析 |
2.1.6 土壤生物学性质分析 |
2.1.6.1 土壤细菌、真菌和病源菌基因丰度分析 |
2.1.6.2 土壤细菌和真菌群落结构分析 |
2.1.7 数据统计方法 |
2.2 结果与分析 |
2.2.1 不同病害等级山核桃土壤pH值和养分差异 |
2.2.2 不同病害等级核桃土壤酶活性差异 |
2.2.3 不同病害等级山核桃土壤细菌真菌群落丰度差异 |
2.2.4 不同病害等级山核桃土壤细菌与真菌多养性差异 |
2.2.4.1 土壤细菌与真菌菌α-多样性分析 |
2.2.4.2 不同病害等级土壤细菌与真菌门水平相对丰度分析 |
2.2.4.3 不同病害等级土壤细菌与真菌目水平相对丰度分析 |
2.2.5 不同病害等级山核桃土壤病原菌丰度差异 |
2.2.6 山核桃林地理化因子、酶活性与微生物多样性的关系 |
2.2.7 不同病害等级山核桃土壤细菌与真菌群落结构 |
2.3 讨论 |
2.4 小结 |
3 山核桃不同施肥方式土壤微生物群落及病原菌丰度差异 |
3.1 材料与方法 |
3.1.1 研究区概况 |
3.1.2 调查区山核桃林基本情况 |
3.1.3 土壤采集 |
3.1.4 理化性质测定 |
3.1.5 土壤酶活性测定 |
3.1.6 土壤DNA提取 |
3.1.6.1 土壤细菌、真菌和病源菌基因丰度分析 |
3.1.6.2 土壤细菌和真菌群落结构分析 |
3.1.7 数据统计方法 |
3.2 结果与分析 |
3.2.1 不同施肥方式山核桃土壤pH值和养分差异 |
3.2.2 不同施肥方式山核桃土壤酶活性差异 |
3.2.3 不同施肥方式山核桃土壤真菌细菌群落丰度差异 |
3.2.4 不同施肥方式山核桃土壤细菌真菌群落多样性差异 |
3.2.4.1 不同施肥方式山核桃土壤细菌真菌α-多样性分析 |
3.2.4.2 不同施肥方式山核桃林地土壤细菌与真菌门水平相对丰度分析 |
3.2.4.3 不同施肥方式山核桃林地土壤细菌与真菌目水平相对丰度分析 |
3.2.5 不同施肥方式山核桃林地土壤病原菌丰度差异 |
3.3 讨论 |
3.4 小结 |
4.防治山核桃根腐病的微生物肥料研发 |
4.1. 材料与方法 |
4.1.1 菌株及实验材料 |
4.1.2 实验方法 |
4.1.2.1. 病原菌与生防菌平板对峙实验 |
4.1.2.2. 病原菌与生防菌土壤共生培养实验 |
4.1.2.3 肥料的研制 |
4.1.2.4 肥料效果的室外盆栽试验 |
4.1.3 数据分析 |
4.2 结果与分析 |
4.2.1 平板中生防菌对病原菌的拮抗效果及其生防菌相互作用 |
4.2.2. 土壤共生培养后病原菌基因丰度 |
4.2.3 肥料堆制过程中生防菌数量的变化 |
4.2.4 微生物肥料盆栽野外种植效果及土壤微生物丰度变化 |
4.2.4.1 不同肥料处理山核桃生长差异 |
4.2.4.2 山核桃不同肥料处理土壤细菌与真菌丰度 |
4.2.4.3 山核桃不同处理肥料土壤尖孢镰刀菌与禾谷镰刀菌丰度 |
4.3 讨论 |
4.4 小结 |
5 结论与展望 |
5.1 结论 |
5.2 创新点 |
5.3 展望 |
参考文献 |
个人简介 |
致谢 |
(8)朝阳市设施蔬菜主要病害安全防控技术研究及氟吡菌酰胺药效试验(论文提纲范文)
摘要 |
Abstract |
第一章 辽宁省朝阳市设施蔬菜种植情况及病虫害防治现状 |
1.1 辽宁省朝阳市设施蔬菜种植概况 |
1.1.1 朝阳市地理位置 |
1.1.2 朝阳市自然条件概况 |
1.1.3 朝阳市设施蔬菜种植生产概况 |
1.2 朝阳市设施蔬菜主要病虫害研究现状 |
1.2.1 朝阳市设施蔬菜病虫害发生特点 |
1.2.2 朝阳市设施蔬菜主要病害种类 |
1.3 绿色防控技术的研究及应用现状 |
1.3.1 绿色防控体系关键技术 |
1.3.2 绿色防控体系的研究进展 |
1.4 研究目的及意义 |
第二章 辽宁省朝阳市设施蔬菜病虫害发生情况调查 |
2.1 研究方法 |
2.1.1 朝阳市设施蔬菜种植情况 |
2.1.2 朝阳市设施蔬菜病害种类调查 |
2.1.3 朝阳市设施蔬菜虫害种类调查 |
2.1.4 危害程度统计方法 |
2.2 结果与分析 |
2.2.1 朝阳市设施蔬菜种类及种植情况 |
2.2.2 朝阳市设施蔬菜病害种类及危害程度 |
2.2.3 朝阳市设施蔬菜虫害种类及危害程度 |
2.3 小结与讨论 |
第三章 朝阳市设施蔬菜重要病害的安全防控药剂筛选 |
3.1 材料与方法 |
3.1.1 试验材料 |
3.1.2 试验地点 |
3.1.3 试验方法 |
3.1.4 药效计算方法 |
3.1.5 数据处理 |
3.2 结果与分析 |
3.2.1 1.5 %苦参碱·蛇床子素可湿性粉剂对番茄灰霉病的防治效果 |
3.2.2 1.5 %苦参碱·蛇床子素可湿性粉剂对黄瓜霜霉病的防治效果 |
3.2.3 1.5 %苦参碱·蛇床子素可湿性粉剂对黄瓜灰霉病的防治效果 |
3.2.4 98%棉隆微粒剂对番茄根结线虫的防治效果 |
3.2.5 棉隆对黄瓜枯萎病的防治效果 |
3.3 小结与讨论 |
第四章 氟吡菌酰胺对番茄根结线虫防效及产量的影响 |
4.1 试验条件 |
4.1.1 试验对象、作物和品种 |
4.2 试验设计和安排 |
4.2.1 药剂 |
4.2.2 试验药剂 |
4.2.3 处理方法 |
4.2.4 药剂用量与处理编号 |
4.3 结果调查 |
4.3.1 生理指标和防效调查方法 |
4.3.2 产量和质量评价 |
4.3.3 经济效益计算 |
4.3.4 对番茄的影响 |
4.3.5 对其他病虫害的影响 |
4.3.6 对其它非靶标生物的影响 |
4.4 结果与分析 |
4.4.1 番茄田间长势 |
4.4.2 各处理对根结线虫的防效 |
4.4.3 各处理对番茄生长指标影响 |
4.5 各处理产量和质量评价 |
4.5.1 对各处理果实纵切面评价 |
4.5.2 各处理对番茄单个果重的影响 |
4.5.3 氟吡菌酰胺防治番茄根结线虫对产量的影响及经济效益测算 |
4.5.4 供试药剂对番茄生长的影响 |
4.5.5 对其他病虫害的影响 |
4.6 小结与讨论 |
第五章 结论与展望 |
参考文献 |
致谢 |
(9)生防菌混合发酵液对植物土传病害防治、土壤性质微生物区系和采后果实品质的影响(论文提纲范文)
摘要 |
Abstract |
缩写符号 |
第一章 绪论 |
1.1 植物土传病害的危害 |
1.2 土传病害的治理方法 |
1.2.1 生物防治土传病害的优点与不足 |
1.2.2 生防微生物混合防治土传病害的研究现状 |
1.2.3 生防微生物混合发酵工艺 |
1.3 生防菌防治土传病害机理 |
1.4 土壤微生物多样性 |
1.4.1 土壤微生物多样性与土传病害的关系 |
1.4.2 外来微生物对土壤微生物区系影响 |
1.5 果实采后品质 |
1.6 猕猴桃的采后生理 |
1.6.1 呼吸作用 |
1.6.2 品质变化 |
1.6.3 激素变化 |
1.6.4 果实采后成熟过程中相关基因的调控 |
1.7 本研究的目的和意义 |
第二章 生防菌混合发酵工艺优化及其发酵液对土传病原菌的防效及机制 |
2.1 实验材料与仪器 |
2.1.1 实验菌种 |
2.1.2 实验试剂 |
2.1.3 实验仪器 |
2.2 实验方法 |
2.2.1 菌种的保藏与活化 |
2.2.2 对峙实验 |
2.2.3 发酵液抑菌试验 |
2.2.4 孢子萌发与菌丝生长实验 |
2.2.5 混合发酵工艺优化 |
2.2.6 盆栽实验 |
2.2.7 混合发酵液对黄瓜叶片膜电解质外渗和光化学效率的影响 |
2.2.8 叶片抗病相关酶活测定 |
2.2.9 混合发酵液有效成分初探 |
2.2.10 数据整理和统计 |
2.3 实验结果 |
2.3.1 对峙实验测定生防菌对病原微生物的抑制效果 |
2.3.2 体外抑菌实验测定混合发酵液对病原菌尖孢镰刀菌的抑制效果 |
2.3.3 混合发酵工艺优化 |
2.3.4 不同接种比例混合发酵液对不同病原菌的抑制效果 |
2.3.5 盆栽实验测定混合发酵液防病效果 |
2.3.6 混合发酵液对黄瓜叶片膜电解质外渗和光化学效率的影响 |
2.3.7 混合发酵液对抗病相关酶活的影响 |
2.3.8 HPLC法测定混合发酵液物质变化 |
2.3.9 代谢谱测定混合发酵液的物质变化 |
2.4 讨论 |
第三章 生防菌混合发酵液对土壤理化生性状及土壤微生物区系的影响 |
3.1 实验材料与仪器 |
3.1.1 实验菌种 |
3.1.2 实验试剂 |
3.1.3 实验仪器 |
3.2 实验方法 |
3.2.1 田间实验 |
3.2.2 土壤理化性质测定 |
3.2.3 土壤相关酶活测定 |
3.2.4 土壤微生物多样性检测 |
3.2.5 统计方法 |
3.3 实验结果 |
3.3.1 混合发酵液对土壤理化性质与土壤酶活性的影响 |
3.3.2 混合发酵液发酵液对土壤真菌多样性的影响 |
3.3.3 混合发酵液对土壤细菌多样性的影响 |
3.4 讨论 |
第四章 生防菌混合发酵液对田间植物病害的防治效果 |
4.1 实验材料与仪器 |
4.1.1 实验菌种 |
4.1.2 实验试剂 |
4.1.3 实验仪器 |
4.2 实验方法 |
4.2.1 实验地点 |
4.2.2 混合发酵液的制备 |
4.2.3 黄瓜枯萎病田间实验 |
4.2.4 番茄灰霉病田间实验 |
4.2.5 猕猴桃溃疡病生物防治效果评价 |
4.2.6 光合效率和抗氧化酶活性 |
4.2.7 数据整理和统计 |
4.3 实验结果 |
4.3.1 田间实验测定混合发酵液对黄瓜枯萎病防病效果 |
4.3.2 混合发酵液对抗病相关酶活的影响 |
4.3.3 田间实验测定混合发酵液对番茄灰霉病的防病效果 |
4.3.4 混合发酵液猕猴桃溃疡病的生物防治作用 |
4.3.5 混合发酵液对叶片的光合作用速率和抗氧化酶活性的影响 |
4.4 讨论 |
第五章 混合发酵液对采后果实品质和保鲜的效应与机理 |
5.1 实验材料与仪器 |
5.1.1 实验菌种 |
5.1.2 实验试剂 |
5.1.3 实验仪器 |
5.2 实验方法 |
5.2.1 实验地点 |
5.2.2 混合发酵液的制备 |
5.2.3 实验方案 |
5.2.4 猕猴桃采后实验 |
5.2.5 转录组分析 |
5.2.6 荧光定量PCR验证 |
5.2.7 代谢组学分析 |
5.2.8 统计分析 |
5.3 实验结果 |
5.3.1 混合发酵液对采后猕猴桃果实生理生化指标的影响 |
5.3.2 混合发酵液对猕猴桃采后病害的影响 |
5.3.3 混合发酵液对猕猴桃果皮转录组的影响 |
5.3.4 RT-qPCR验证转录组测序数据 |
5.3.5 代谢谱测定混合发酵液对采后猕猴桃果肉代谢物的影响 |
5.4 讨论 |
第六章 总论 |
参考文献 |
附录 |
致谢 |
攻读学位期间发表的学术论文 |
参与项目 |
附件 |
(10)稻用生物与化学组合增效杀菌剂的研发和相关机制研究(论文提纲范文)
摘要 |
Abstract |
缩略词表(Abbreviation) |
第一章 文献综述 |
1.1 微生物与植物健康 |
1.2 水稻病害 |
1.2.1 水稻上的主要病害及其危害 |
1.2.2 水稻稻瘟病的发生与危害 |
1.2.3 水稻纹枯病的发生与危害 |
1.2.4 水稻稻曲病发生与危害 |
1.3 生物杀菌剂及其在水稻生产上的应用 |
1.4 枯草芽孢杆菌在植物病害生物防治上的研究与应用 |
1.4.1 枯草芽孢杆菌在植物病害防治上的应用 |
1.4.2 枯草芽孢杆菌的生防机制 |
1.5 链霉菌在植物病害生物防治上的研究与应用 |
1.5.1 链霉菌在植物病害防治上的应用 |
1.5.2 链霉菌对植物病害的生防机制 |
1.6 植物病害生物防治的缺陷与应对 |
1.6.1 植物病害生物防治的缺陷 |
1.6.2 植物病害生物防治缺陷的应对 |
1.7 水稻病害的化学防治 |
1.7.1 水稻稻瘟病的化学防治 |
1.7.2 水稻纹枯病的化学防治 |
1.7.3 水稻稻曲病的化学防治 |
1.7.4 水稻病害化学防治存在的问题 |
1.8 论文研究目的与思路 |
第二章 芽孢杆菌H158的鉴定及其对水稻病害的生防作用和相关机理 |
2.1 前言 |
2.2 材料与方法 |
2.2.1 供试菌株、培养基与培养条件 |
2.2.2 菌株H158的鉴定 |
2.2.3 H158生物膜的形成 |
2.2.4 H158与不同病原菌对峙培养 |
2.2.5 H158产细胞壁降解酶的活性 |
2.2.6 H158对水稻系统抗性的影响 |
2.2.7 与H158对峙培养过程中稻瘟病菌转录组分析 |
2.2.8 H158对水稻真菌病害防效试验 |
2.2.9 H158与不同杀菌剂混用对水稻主要真菌病害的田间药效试验 |
2.2.10 H158处理后稻谷加工性能和米质的检测 |
2.2.11 数据处理 |
2.3 结果与分析 |
2.3.1 H158的鉴定 |
2.3.2 H158对水稻常见病原菌的拮抗能力 |
2.3.3 H158在不同培养基上产生的生物膜结构 |
2.3.4 真菌细胞壁裂解酶活性 |
2.3.5 H158对水稻系统抗性的影响 |
2.3.6 与H158对峙培养过程中稻瘟病菌转录组分析 |
2.3.7 H158对水稻主要病害的田间防治效果 |
2.3.8 H158和杀菌剂混用对水稻主要病害的防治效果 |
2.3.9 H158处理对稻谷加工性能和品质的影响 |
2.4 讨论 |
第三章 H158与QoI类杀菌剂混用在水稻纹枯病防治上的增效作用及相关机制 |
3.1 前言 |
3.2 材料与方法 |
3.2.1 供试菌株、培养基及培养条件 |
3.2.2 品种和杀菌剂 |
3.2.3 QoI类杀菌剂与H158混用对水稻纹枯病的防治试验 |
3.2.4 QoI类杀菌剂对H158的培养状况的影响 |
3.2.5 QoI类杀菌剂对H158在植株定殖性能的影响 |
3.2.6 肟菌酯对H158生物膜形成的影响 |
3.2.7 与肟菌酯混用对H158水稻ISR的影响 |
3.2.8 数据处理 |
3.3 结果与分析 |
3.3.1 H158和QoI类杀菌剂混用在水稻纹枯病防控上的增效作用 |
3.3.2 QoI类杀菌剂对H158培养状况的影响 |
3.3.3 QoI类杀菌剂对H158在植株定殖性能的影响 |
3.3.4 肟菌酯对H158生物膜形成的影响 |
3.3.5 肟菌酯对H158水稻ISR的影响 |
3.4 讨论 |
第四章 H158与戊唑醇混用在稻曲病防治上的增效作用及相关机制 |
4.1 前言 |
4.2 材料与方法 |
4.2.1 供试菌株、培养基及培养条件 |
4.2.2 品种和杀菌剂 |
4.2.3 戊唑醇与H158混用对水稻曲病的田间防治试验 |
4.2.4 戊唑醇对H158的培养状况的影响 |
4.2.5 戊唑醇对H158生物膜形成的影响 |
4.2.6 与戊唑醇混用对H158水稻ISR的影响 |
4.2.7 数据分析 |
4.3 结果与分析 |
4.3.1 H158与戊唑醇在稻曲病防治上的增效作用 |
4.3.2 戊唑醇对H158培养性状的影响 |
4.3.3 戊唑醇对H158生物膜形成的影响 |
4.3.4 戊唑醇对H158水稻ISR的影响 |
4.4 讨论 |
第五章 链霉菌HSA312的鉴定及其对水稻病害生防作用和相关机理 |
5.1 前言 |
5.2 材料与方法 |
5.2.1 供试菌株、培养基与培养条件 |
5.2.2 菌株HSA312的鉴定 |
5.2.3 HSA312与不同病原菌对峙培养 |
5.2.4 平板计数法检测HSA312的紫外线抗性 |
5.2.5 平板计数法检测HSA312在植株表面的定殖 |
5.2.6 HSA312 对水稻ISR |
5.2.7 三环唑和HSA312混用对水稻稻瘟病菌转录组的影响 |
5.2.8 HSA312对水稻真菌病害防效田间试验 |
5.2.9 HSA312对水稻稻瘟病的生防作用 |
5.2.10 HSA312与不同杀菌剂混用对水稻稻瘟病田间药效试验 |
5.2.11 HSA312处理水稻后稻谷加工性能和米质的检测 |
5.2.12 数据处理 |
5.3 结果与分析 |
5.3.1 HSA312的鉴定 |
5.3.2 HSA312对水稻常见病原菌的拮抗能力 |
5.3.3 真菌细胞壁裂解酶活性 |
5.3.4 HSA312对紫外线抗性 |
5.3.5 HSA312在水稻植株上留存动态分析 |
5.3.6 HSA312对水稻系统抗性的影响 |
5.3.7 与HSA312对峙培养过程中稻瘟病菌转录组分析 |
5.3.8 HSA312对水稻主要病害的防治效果 |
5.3.9 HSA312对水稻稻瘟病的生防作用 |
5.3.10 HSA312和不同药剂混用对水稻稻瘟病的防治效果 |
5.3.11 HSA312对稻谷加工性能和品质的影响 |
5.4 讨论 |
第六章 HSA312与三环唑混用在稻瘟病防治上的增效作用及相关机制 |
6.1 前言 |
6.2 材料与方法 |
6.2.1 供试菌株、培养基及培养条件 |
6.2.2 品种和杀菌剂 |
6.2.3 三环唑与HSA312混用对水稻稻瘟病的田间防治试验 |
6.2.4 三环唑对HSA312的培养状况的影响 |
6.2.5 三环唑对HSA312拮抗能力的影响 |
6.2.6 与三环唑混用对HSA312 引发水稻ISR的影响 |
6.2.7 三环唑和HSA312混用对水稻稻瘟病菌转录组的影响 |
6.2.8 稻瘟菌受生防菌和三环唑影响的WGCNA分析 |
6.2.9 数据分析 |
6.3 结果与分析 |
6.3.1 HSA312和三环唑混用对水稻稻瘟病的防治效果 |
6.3.2 三环唑对HSA312的培养状况的影响 |
6.3.3 三环唑对HSA312拮抗能力的影响 |
6.3.4 三环唑对HSA312 水稻ISR的影响 |
6.3.5 三环唑和HSA312混用对水稻稻瘟病菌基因转录组的影响 |
6.3.6 水稻稻瘟病菌受生防菌和三环唑影响的WGCNA分析 |
6.4 讨论 |
第七章 全文总结与展望 |
7.1 主要结论 |
7.1.1 芽孢杆菌H158的鉴定及其对水稻病害的生防与相关机理 |
7.1.2 H158与QoI类杀菌剂混用在水稻纹枯病防治上的增效作用及相关机制 |
7.1.3 H158与戊唑醇混用在稻曲病防治上的增效作用及相关机制 |
7.1.4 链霉菌HSA312的鉴定及其对水稻病害生防作用与相关机理 |
7.1.5 HSA312与三环唑混用在稻瘟病防治上的增效作用及相关机制 |
7.2 创新点 |
7.3 研究展望 |
参考文献 |
附录 攻读博士学位期间发表的学术论文及专利 |
致谢 |
四、保护地番茄几种生理性病害的发生与防治(论文参考文献)
- [1]1,3-二氯丙烯熏蒸后土壤活化对土壤微生物群落结构及番茄生长的影响[D]. 程鸿燕. 中国农业科学院, 2021(09)
- [2]生物质炭介导的番茄枯萎病防治效果及机理研究[D]. 裴广鹏. 山西大学, 2021(01)
- [3]两株生防细菌的复合菌剂对番茄灰霉病防效的研究[D]. 李凤硕. 东北农业大学, 2021
- [4]柑橘黑点病生防菌筛选、鉴定和制剂开发[D]. 刘常利. 浙江大学, 2021(01)
- [5]党参灰霉病拮抗细菌的筛选及对党参促生作用的研究[D]. 任怡璇. 西北师范大学, 2021(12)
- [6]复合生防菌对洋葱根腐病害的防治与机理研究[D]. 张晓梦. 兰州交通大学, 2021(02)
- [7]山核桃根腐病土壤微生物群落特征研究以及抑病生物有机肥料研发[D]. 高竞. 浙江农林大学, 2021(07)
- [8]朝阳市设施蔬菜主要病害安全防控技术研究及氟吡菌酰胺药效试验[D]. 商寅. 沈阳农业大学, 2020(05)
- [9]生防菌混合发酵液对植物土传病害防治、土壤性质微生物区系和采后果实品质的影响[D]. 丛韫喆. 山东大学, 2020(01)
- [10]稻用生物与化学组合增效杀菌剂的研发和相关机制研究[D]. 刘连盟. 华中农业大学, 2020