一、南钢4号高炉炉役后期操作实践(论文文献综述)
白钢钉[1](2021)在《南钢2号高炉炉役后期护炉生产实践》文中提出对南钢2号高炉一代炉役后期护炉的生产实践进行了总结。通过采取调整优化用料结构,加强铁口深度管理和炉温、渣系的控制,同时加钒钛矿护炉,合理控制炉底、炉缸的热流强度等措施,达到了安全生产,并保持一定的产能水平。
卢正东[2](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中进行了进一步梳理现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。
张猛超,程洪全,贾新,李志海,余晓波[3](2021)在《首钢股份1号高炉炉缸侵蚀状况剖析》文中研究表明结合首钢股份1号高炉炉缸破损调查结果,从有害元素、焦炭质量、铁水含碳饱和度、死料柱及炉役后期频繁停炉的影响等方面,对炉缸侵蚀原因进行了剖析。破损调查结果表明,炉缸呈现出"象脚形"侵蚀,最为严重的侵蚀部位在铁口中心线下方2.1~2.4m之间,侵蚀最严重部位炭砖残余厚度330 mm,位于25号风口下方。认为炉役后期死铁层加深后,应努力提高焦炭质量,以缓解死料柱下部环流对炉缸的侵蚀。
路鹏,吕志敏,王根,褚润林,闫军,苏爱民[4](2020)在《宣钢1号高炉长寿高效生产实践》文中进行了进一步梳理对宣钢1号高炉长寿高效生产实践进行了总结,通过提升原燃料质量;优化上、中、下部调剂,保持炉缸工作均匀活跃,煤气流分布合理稳定,维护合理操作炉型;严格控制K、Na、Zn等有害元素含量;采取定期炉体灌浆,减少炉缸气隙等一系列措施,控制住了炉体冷却壁水管破损增加及炉缸侧壁温度超标的趋势,实现了高炉长寿高效生产。
何友国[5](2019)在《唐钢2000m3高炉铜冷却壁应用研究》文中指出本课题分析总结了高炉应用铜冷却壁后,在炉役前期由于铜冷却壁本身优良的挂渣能力,在高炉原燃料冶金性能变差、入炉粉率增加,高炉操作等因素作用下,造成高炉炉墙形成以铜冷却壁所挂渣皮为基础从下至上的结厚,高炉操作炉型受破坏;同时也分析总结了高炉炉役后期,因铜冷却壁因自身物理化学性质和高炉操作,导致铜冷却壁破损失效的因素。为了保证使用铜冷却壁高炉在炉役前期冶炼的正常运行,一是在判定和处理铜冷却壁结厚方面,唐钢2#高炉在学习借鉴国内高炉处理结厚经验的基础上,通过研究实践总结了一套技术。在判定炉墙结厚的35天内,高炉进行短时间休风45小时,在休风前分组集中插焦,加硅石,先烧掉铜冷却壁所挂渣皮,休风后对结厚方向的冷却壁冷却水改汽化,送风后送水,适当开放边缘气流,形成对结厚体的急冷急热冲击,有利于结厚体的脱落,以达到处理结厚的目的。二是在预防铜冷却壁结厚方面,唐钢2号高炉提出了全流程预防高炉结厚的理念。为了保证使用铜冷却壁高炉在炉役后期的安全运行,唐钢2000m3级高炉总结了铜冷却壁的破损原因、破损铜冷却壁漏水判定。在判定铜冷却壁破损漏水后,利用休风机会,加装铜冷却柱、勾管、冷却水管改工业水开路冷却等措施,来维持高炉的安全运行,从而达到延长一代炉龄,为高炉大修准备争取时间,减小高炉经济损失。图25幅;表21个;参56篇。
秦偲杰[6](2019)在《国内某1800m3高炉炉缸侵蚀行为与机理研究》文中进行了进一步梳理随着高炉大型化的不断发展,高炉长寿技术的研究迫在眉睫,而高炉炉缸砖衬的侵蚀速率作为高炉寿命的限制性环节,受到了研究人员的密切关注。该高炉一代炉龄只维持了7年3个月,属于国内炉龄较短的高炉之一,通过对该高炉进行炉缸破损调查,研究炉缸的侵蚀行为与机理。本文对该高炉的炉役概况进行介绍及评价,从炉缸结构、耐火材料、冷却系统以及热风炉系统等多个方面,评价了该高炉设计的合理性,并简要说明了高炉炉役期的生产情况。其次,总结了高炉炉缸炉底的侵蚀炉型及侵蚀规律,并对炉缸内的侵蚀形貌、特征等进行分析;根据炉缸内环热电偶温度的最高点及其所对应冷端温度值,得到炉缸碳砖残余厚度的理论计算值,这对于分析碳砖的实际侵蚀状况具有一定的参考价值;并且,归纳了炉役末期炉缸侵蚀严重处即标高7.851m、8.653m与9.455m处热电偶的温度走势,结合当期铁水中Mn、Ti等元素对应含量变化,对炉缸各部位砖衬的实际侵蚀情况进行了综合的分析。基于所取炉缸炉底部位受到侵蚀的残余砖衬样品,选取具有代表性的碳砖、陶瓷垫与粘结层部位,对其进行元素、形貌、能谱和物相等分析:掌握炉缸内各位置碳砖的侵蚀特点,通过计算明确了Zn在炉缸内参与反应并破坏碳砖的机理,并分析了陶瓷垫的侵蚀特点及其保存相对较好的原因,同时对粘结层及其表面有害元素的赋存形态、富集程度等方面进行分析,探索其炉缸粘结层的保护作用机制。最后,对炉缸区的有害元素含量分布与焦炭质量这两个重要指标进行研究:(1)从炉缸纵向和横向两个方面对有害元素的空间分布特点进行分析,了解其在炉缸内的分布规律及对炉缸侵蚀的影响;(2)通过工业分析、形貌、能谱等综合分析手段,掌握焦炭达到炉缸区的质量,研究焦炭在炉缸内的劣化行为。
雷发荣,祝和利,钱海涛[7](2018)在《柳钢4号2000 m3高炉炉役后期布料制度探索实践》文中提出阐述了柳钢4号2 000m3高炉布料方式的特点。为了解决原燃料质量一般和后期炉役护炉生产条件下炉况长期稳定顺行的问题,4号高炉采用大角度、大角差结合中心加焦布料方式,其核心要点是适当压制边沿气流,发展中心气流。柳钢4号高炉生产实践表明,采用大角度、大角差结合中心加焦布料方式,边沿汽流相对较重,边沿十字测温温度在150℃以下,但是由于中心加焦的作用,中心煤气流较旺盛,高炉顺行状态良好。
张利波[8](2017)在《宣钢4号高炉炉役后期合理炉型控制实践》文中研究指明针对炉役后期高炉特点,4#高炉始终把合理炉型控制放在科技攻关的首要位置,逐步形成了适应原燃料条件变化及炉役发展的高炉操作控制体系。结合宣钢4#高炉生产攻关操作实践,解析和探讨炉役后期高炉合理炉型稳定控制技术基本规律,进一步优化和改进炉役后期合理操作炉型管控技术。
凌丹[9](2015)在《宝钢不锈钢有限公司2号高炉长寿的研究》文中研究表明宝钢不锈钢有限公司2号高炉设计炉容为2500m3,于1999年10月8日点火投产,一代炉役无中修设计寿命12年。至2012年10月17日停炉累计生产生铁2581.4万吨、单位炉容产铁10325.6t/m3,步入了国内长寿高炉的先进行列。本文主要阐述了高炉炉役末期延长高炉使用寿命所采取的措施。为了保证宝钢不锈钢2号高炉的长寿,对2号高炉的破损情况进行调查,并对其炉壳沉降采取了应对策略,确定炉役末期的护炉措施及高炉操业。首先,研究对破损冷却板、冷却壁进行了调查,发现在高炉投产前受当时施工进度的影响,在冷却板孔道的角部直接采用了气割扩孔方法,留下了应力隐患。导致高炉在中后期出现煤气从法兰及炉壳接缝处泄漏,甚至开裂喷出炉料现象。高炉被迫大幅减风,甚至于长期休风进行焊补的不利局面,以及2005-2008年期间几次高炉炉况失常带来的影响,冷却设备出现集中烧损、炉皮发红开裂喷火,工况劣化致使炉壳变形加剧,局部区域沉降明显。其次,针对炉壳沉降第一阶段的状态,利用高炉计划检修机会,对炉壳进行焊补处理,对内衬的薄弱部位进行压浆处理,并加大了冷却强度,起到了一定的效果。2006年11月-2009年6月的时间段炉壳发红、泄露及沉降都得到了控制。但2009年6月以后,高炉又进入了第二阶段的沉降,而且沉降速度加快。出现了冷却板法兰波纹管开裂、上下二层冷却板法兰叠加、冷却板烧损严重的情况。高炉先后采取了限产、炉壳外部打水、支撑减载措施、炉体框架加固等对策。并取得了预期的效果。最后,2号高炉通过采取完善高炉炉缸检测、强化炉缸冷却、加强铁口维护,铁口泥量维持上限,铁口区域新增电偶、调整高炉操业合理控制冶炼强度、风口喂线护炉、长期休风镇静炉缸等多种护炉措施,使高炉炉缸炭砖电偶温度、冷却壁热流强度等参数控制在相对安全范围内,有效地减缓对炉缸炭砖的侵蚀,维持炉役后期的安全生产。
张芳,钟延春[10](2012)在《高炉长寿的意义及实现高炉长寿的对策》文中指出高利用系数、低能耗和长寿命是现代大型高炉追求的目标。高炉的寿命受到高炉结构、耐材质量和管理水平等因素的影响。要实现高炉的长寿,在技术上应采用合理的炉型结构和性能良好的耐火材料、设置合适的死铁层深度、选用高效的冷却系统,并对高炉的运行状况进行实时监测;同时还应采取高效的操作、维护及管理措施;针对炉役后期可能出现的问题,采取有效的措施进行维护。
二、南钢4号高炉炉役后期操作实践(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、南钢4号高炉炉役后期操作实践(论文提纲范文)
(1)南钢2号高炉炉役后期护炉生产实践(论文提纲范文)
一、炉缸现状 |
(一)钒钛护炉 |
(二)炉体灌浆 |
(三)上部调剂 |
(四)铁口维护 |
(五)强化冷却 |
二、加风生产 |
(一)对于原料的监控 |
(二)对于燃料的监控 |
三、结束语 |
(2)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)
摘要 |
Abstract |
引言 |
第1章 文献综述 |
1.1 现代高炉长寿概况 |
1.2 高炉长寿设计研究进展 |
1.2.1 炉缸结构 |
1.2.2 炉底死铁层 |
1.3 高炉炉衬与冷却壁选材研究进展 |
1.3.1 耐火材料 |
1.3.2 冷却壁 |
1.4 高炉损毁机理研究进展 |
1.4.1 炉缸炉底损毁机理 |
1.4.2 炉体冷却壁损毁机理 |
1.5 高炉传热机理研究进展 |
1.5.1 高炉炉缸炉底传热 |
1.5.2 高炉炉体冷却壁传热 |
1.6 本论文的提出和研究内容 |
1.6.1 论文提出 |
1.6.2 研究内容 |
第2章 高炉损毁机理研究方法 |
2.1 高炉破损调查 |
2.1.1 破损调查内容 |
2.1.2 破损调查方法 |
2.2 实验研究方法 |
2.2.1 炭砖表征 |
2.2.2 冷却壁表征 |
2.2.3 渣皮表征 |
2.3 高炉炉衬与冷却壁传热性能研究 |
2.3.1 传热模型建立 |
2.3.2 模型验证 |
第3章 武钢高炉炉缸炉底损毁机理研究 |
3.1 高炉炉缸炉底损毁特征分析 |
3.1.1 武钢4 号高炉破损调查(第3 代) |
3.1.2 武钢5 号高炉破损调查(第1 代) |
3.2 炉缸炉底损毁机理研究 |
3.2.1 炉缸环缝侵蚀 |
3.2.2 炉缸炉底象脚区域损毁 |
3.3 高炉钛矿护炉研究 |
3.3.1 Ti(C,N)形成热力学分析 |
3.3.2 破损调查取样与表征 |
3.3.3 武钢高炉钛矿护炉效果分析 |
3.4 本章小结 |
第4章 武钢高炉冷却壁损毁机理研究 |
4.1 高炉冷却壁损毁特征分析 |
4.1.1 武钢5 号高炉破损调查(第1 代) |
4.1.2 武钢1 号高炉破损调查(第3 代) |
4.1.3 武钢7 号高炉破损调查(第1 代) |
4.1.4 武钢6 号高炉破损调查(第1 代) |
4.2 球墨铸铁冷却壁损毁机理研究 |
4.2.1 力学性能分析 |
4.2.2 显微结构分析 |
4.2.3 损毁机理分析 |
4.3 铜冷却壁损毁机理研究 |
4.3.1 力学性能分析 |
4.3.2 理化指标分析 |
4.3.3 显微结构分析 |
4.3.4 损毁机理分析 |
4.4 本章小结 |
第5章 武钢高炉炉缸内衬设计优化研究 |
5.1 高炉炉缸全生命周期温度场分析 |
5.1.1 烘炉阶段炉缸温度场 |
5.1.2 炉役初期炉缸温度场 |
5.1.3 炉役全周期炉缸温度场 |
5.1.4 炉役自保护期炉衬厚度 |
5.2 炉缸传热体系结构优化研究 |
5.2.1 炉缸炭砖传热体系优化 |
5.2.2 炉缸冷却结构优化 |
5.3 高炉炉缸长寿化设计与操作 |
5.3.1 炉缸结构设计和选型 |
5.3.2 高炉炉缸长寿操作技术 |
5.4 本章小结 |
第6章 武钢高炉冷却壁长寿优化研究 |
6.1 高炉冷却壁渣皮特性及行为研究 |
6.1.1 渣皮物相组成及微观结构研究 |
6.1.2 渣皮流动性分析 |
6.1.3 渣皮导热性能及挂渣能力分析 |
6.2 高炉冷却壁渣皮行为监测研究 |
6.2.1 渣皮厚度及热流强度计算 |
6.2.2 铜冷却壁渣皮监测系统研究 |
6.3 高炉冷却壁长寿技术对策研究 |
6.3.1 高炉冷却壁长寿设计优化 |
6.3.2 高炉冷却壁操作优化 |
6.3.3 高炉冷却壁渣皮厚度管控技术 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 展望 |
本论文主要创新点 |
致谢 |
参考文献 |
附录1 攻读博士学位期间取得的科研成果 |
附录2 攻读博士学位期间参加的科研项目 |
(4)宣钢1号高炉长寿高效生产实践(论文提纲范文)
0概况 |
1 长寿高效生产技术措施 |
1.1 提升原燃料质量 |
1.1.1 烧结矿质量提升 |
1.1.2 改善焦炭质量 |
1.2 高炉下部初始气流合理控制 |
1.3 优化装料制度,维护合理操作炉型 |
1.4 冷却制度调整 |
1.5 稳定造渣制度 |
1.6 严格控制有害元素含量 |
1.7 定修灌浆 |
2 取得的效果 |
3 结语 |
(5)唐钢2000m3高炉铜冷却壁应用研究(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 文献综述 |
1.1 研究高炉应用铜冷却壁的背景及意义 |
1.2 高炉冷却设备介绍 |
1.2.1 高炉冷却壁分类 |
1.2.2 铜冷却壁和铸铁冷却壁的对比 |
1.3 国内外高炉铜冷却壁应用情况 |
1.3.1 国外高炉铜冷却壁应用情况 |
1.3.2 国内高炉铜冷却壁应用情况 |
1.4 本章小结 |
1.5 本课题研究目标及研究内容 |
第2章 唐钢2000m~3高炉本体冷却设备概况 |
2.1 冷却系统设计流程及参数 |
2.1.1 冷却系统概况 |
2.1.2 冷却系统技术参数 |
2.2 唐钢2000m~3高炉冷却系统监控和管理制度 |
2.2.1 工艺技术控制标准 |
2.2.2 工艺技术控制措施 |
第3章 唐钢2~#高炉炉役前期铜冷却壁应用研究 |
3.1 铜冷却壁对高炉操作炉型的影响 |
3.1.1 铜冷却壁对高炉操作炉型影响机理 |
3.1.2 铜冷却壁对高炉操作炉型影响的矛盾性 |
3.1.3 唐钢2~#高炉铜冷却壁对高炉操作炉型影响现状 |
3.2 使用铜冷却壁后唐钢高炉炉墙结厚的征兆 |
3.2.1 炉墙温度低 |
3.2.2 料尺有尺差 |
3.2.3 十字测温边缘低 |
3.2.4 炉顶成像边缘出现亮光 |
3.2.5 炉缸工作不均 |
3.3 唐钢2~#高炉炉墙结厚的原因分析 |
3.3.1 高炉大修扩容后炉型不合理 |
3.3.2 原燃料 |
3.3.3 操作因素导致高炉结厚 |
3.4 处理唐钢2~#高炉铜冷却壁结厚方法及实践 |
3.4.1 高炉结厚处理的一般原则 |
3.4.2 唐钢2~#高炉处理结厚实践 |
3.5 预防唐钢2~#铜冷却壁结厚的措施 |
3.5.1 实施全流程原燃料整粒工作 |
3.5.2 高炉制定原燃料管理措施 |
3.5.3 实施烧结系统入机料碱金属和锌元素管控工作 |
3.5.4 稳态烧结工艺技术的实施稳定烧结矿冶金性能 |
3.5.5 高炉操作制度的合理管控 |
3.5.6 建立高炉结厚预警模型 |
3.6 应对铜冷却壁结厚效果 |
3.7 本章小结 |
第4章 唐钢1~#高炉炉役后期铜冷却壁应用研究 |
4.1 概述 |
4.2 铜冷却壁破损原因分析 |
4.2.1 铜冷却壁化学侵蚀 |
4.2.2 铜冷却壁应力的破损作用 |
4.2.3 铜冷却壁磨损 |
4.2.4 操作制度的影响 |
4.3 铜冷却壁在唐钢1~#高炉炉役末期破损征兆及应对措施 |
4.3.1 冷却壁破损征兆 |
4.3.2 冷却壁破损应对措施 |
4.3.3 铜冷却壁破损期高炉操作制度调整和管理措施 |
4.4 实施效果 |
4.5 本章小结 |
结论 |
参考文献 |
致谢 |
导师简介 |
企业导师简介 |
作者简介 |
学位论文数据集 |
(6)国内某1800m3高炉炉缸侵蚀行为与机理研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 国内外高炉长寿技术现状 |
1.1.1 国外高炉长寿技术现状 |
1.1.2 国内高炉长寿技术现状 |
1.2 高炉炉缸侵蚀的理论分析 |
1.2.1 有害金属侵蚀 |
1.2.2 炉缸结构设计 |
1.2.3 死铁层深度与铁水冲刷溶蚀 |
1.2.4 炉缸热流强度与冷却强度 |
1.2.5 炉缸环裂 |
1.3 高炉炉缸维护 |
1.3.1 炉缸状态监控 |
1.3.2 护炉措施 |
1.3.3 操作制度 |
1.4 研究背景与研究内容 |
1.4.1 研究背景 |
1.4.2 研究内容 |
2 高炉炉役评价 |
2.1 炉缸炉底结构 |
2.2 炉缸炉底耐火材料参数 |
2.3 炉缸冷却设备及系统 |
2.4 热风炉系统 |
2.5 炉役期生产及检修概况 |
2.6 本章小结 |
3 高炉炉缸的侵蚀行为 |
3.1 炉缸侵蚀炉型与形貌分析 |
3.1.1 炉缸侵蚀炉型 |
3.1.2 炉缸砖衬侵蚀形貌 |
3.1.3 炉底陶瓷垫侵蚀形貌 |
3.2 碳砖残余厚度计算与分析 |
3.2.1 炉缸碳砖侵蚀厚度计算 |
3.2.2 计算结果与分析 |
3.3 炉役末期热电偶温度分析 |
3.3.1 热电偶温度变化趋势 |
3.3.2 铁水物理热、Si含量与Mn含量变化趋势 |
3.4 本章小结 |
4 高炉炉缸砖衬微观侵蚀分析 |
4.1 炉缸砖衬侵蚀特征 |
4.1.1 炉缸碳砖侵蚀特征 |
4.1.2 炉底陶瓷垫侵蚀特征 |
4.2 炉缸砖衬侵蚀微观分析 |
4.2.1 碳砖侵蚀微观分析 |
4.2.2 陶瓷垫侵蚀微观分析 |
4.3 炉缸粘结层微观分析 |
4.3.1 炉缸粘结层形貌 |
4.3.2 炉缸粘结层微观分析 |
4.4 本章小结 |
5 炉缸有害元素分布与焦炭质量分析 |
5.1 有害元素空间分布 |
5.1.1 纵向分布 |
5.1.2 横向分布 |
5.2 焦炭质量分析 |
5.2.1 工业分析 |
5.2.2 焦炭微观形貌分析 |
5.2.3 焦炭灰分成分分析 |
5.3 本章小结 |
6 结论 |
参考文献 |
致谢 |
附录 攻读研究生期间主要发表的论文情况 |
(8)宣钢4号高炉炉役后期合理炉型控制实践(论文提纲范文)
0前言 |
1 总体思路 |
2 技术措施 |
2.1 高炉下部初始气流控制技术 |
2.1.1 适当延长风口回旋区深度 |
2.1.2 适当提高理论燃烧温度 |
2.2 高炉上部气流稳定控制技术 |
2.3 炉役后期热制度与造渣制度控制技术 |
3 效果 |
4 结语 |
(9)宝钢不锈钢有限公司2号高炉长寿的研究(论文提纲范文)
摘要 |
Abstract |
第1章 文献综述 |
第2章 2号高炉的概括 |
2.1 设计的炉型情况及其基本信息 |
2.2 冷却设备的具体位置信息 |
2.3 课题提出 |
2.4 研究内容 |
第3章 宝钢不锈钢有限公司2号高炉的破损调查及维护 |
3.1 炉喉钢砖破损调查 |
3.2 炉身变形调查 |
3.2.1 冷却板 |
3.2.2 炉身变形调查 |
3.2.3 原因分析 |
3.3 炉腹冷却壁调查 |
3.4 炉缸破损调查及分析 |
3.4.1 炉缸破损调查 |
3.4.2 炉缸前期维护 |
3.4.3 侵蚀计算校验 |
3.4.4 炉缸长寿分析 |
3.5 高炉炉壳沉降及对策 |
3.5.1 高炉中下部出现发红、泄露、沉降情况 |
3.5.2 高炉炉壳第一阶段情况(2003年~2005年) |
3.5.3 高炉炉壳第二阶段情况(2006年~2009年) |
3.5.4 检测和应对措施 |
3.5.5 炉壳更换前措施 |
3.6 本章小结 |
第4章 宝钢不锈钢有限公司2号高炉炉役末期的护炉实践 |
4.1 高炉炉缸侵蚀情况 |
4.1.1 炉缸环炭温度及炉缸冷却壁热流强度上升 |
4.1.2 炉缸砖衬厚度的计算 |
4.2 高炉护炉措施 |
4.2.1 完善高炉炉缸检测 |
4.2.2 强化炉缸冷却 |
4.2.3 加强铁口维护,铁口泥量维持上限 |
4.2.4 在铁口区域新增电偶 |
4.2.5 调整高炉操业,合理控制冶炼强度 |
4.2.6 风口喂线护炉 |
4.2.7 长期休风镇静炉缸 |
4.3 实施效果 |
4.4 本章小结 |
第5章 结论 |
参考文献 |
致谢 |
四、南钢4号高炉炉役后期操作实践(论文参考文献)
- [1]南钢2号高炉炉役后期护炉生产实践[J]. 白钢钉. 冶金管理, 2021(21)
- [2]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
- [3]首钢股份1号高炉炉缸侵蚀状况剖析[J]. 张猛超,程洪全,贾新,李志海,余晓波. 炼铁, 2021(01)
- [4]宣钢1号高炉长寿高效生产实践[J]. 路鹏,吕志敏,王根,褚润林,闫军,苏爱民. 河南冶金, 2020(01)
- [5]唐钢2000m3高炉铜冷却壁应用研究[D]. 何友国. 华北理工大学, 2019(04)
- [6]国内某1800m3高炉炉缸侵蚀行为与机理研究[D]. 秦偲杰. 西安建筑科技大学, 2019(06)
- [7]柳钢4号2000 m3高炉炉役后期布料制度探索实践[J]. 雷发荣,祝和利,钱海涛. 中国冶金, 2018(11)
- [8]宣钢4号高炉炉役后期合理炉型控制实践[J]. 张利波. 河南冶金, 2017(01)
- [9]宝钢不锈钢有限公司2号高炉长寿的研究[D]. 凌丹. 东北大学, 2015(12)
- [10]高炉长寿的意义及实现高炉长寿的对策[A]. 张芳,钟延春. 2012年全国高炉长寿与高风温技术研讨会论文集, 2012